0.01
This commit is contained in:
parent
a89f9226e8
commit
07c63abb30
@ -1,5 +1,9 @@
|
||||
from scipy.io import loadmat
|
||||
import torch
|
||||
import lmdb
|
||||
import os
|
||||
import pickle
|
||||
from io import BytesIO
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.folder import default_loader
|
||||
from torchvision.datasets import ImageFolder
|
||||
@ -22,7 +26,7 @@ class CARS(Dataset):
|
||||
return len(self.annotations)
|
||||
|
||||
def __getitem__(self, item):
|
||||
file_name = "{:05d}.jpg".format(item+1)
|
||||
file_name = "{:05d}.jpg".format(item + 1)
|
||||
target = self.annotations[file_name]
|
||||
sample = self.loader(self.root / "cars_train" / file_name)
|
||||
if self.transform is not None:
|
||||
@ -41,6 +45,22 @@ class ImprovedImageFolder(ImageFolder):
|
||||
return super().__getitem__(item)[0]
|
||||
|
||||
|
||||
class LMDBDataset(Dataset):
|
||||
def __init__(self, lmdb_path):
|
||||
self.db = lmdb.open(lmdb_path, subdir=os.path.isdir(lmdb_path), readonly=True, lock=False,
|
||||
readahead=False, meminit=False)
|
||||
with self.db.begin(write=False) as txn:
|
||||
self.classes_list = pickle.loads(txn.get(b"classes_list"))
|
||||
self._len = pickle.loads(txn.get(b"__len__"))
|
||||
|
||||
def __len__(self):
|
||||
return self._len
|
||||
|
||||
def __getitem__(self, i):
|
||||
with self.db.begin(write=False) as txn:
|
||||
return torch.load(BytesIO(txn.get("{}".format(i).encode())))
|
||||
|
||||
|
||||
class EpisodicDataset(Dataset):
|
||||
def __init__(self, origin_dataset, num_class, num_set, num_episodes):
|
||||
self.origin = origin_dataset
|
||||
@ -60,12 +80,12 @@ class EpisodicDataset(Dataset):
|
||||
for i, c in enumerate(random_classes):
|
||||
image_list = self.origin.classes_list[c]
|
||||
if len(image_list) > self.num_set * 2:
|
||||
idx_list = torch.randperm(len(image_list))[:self.num_set*2].tolist()
|
||||
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
||||
else:
|
||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set*2,)).tolist()
|
||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
||||
support_set_list.extend([self.origin[idx] for idx in idx_list[:self.num_set]])
|
||||
query_set_list.extend([self.origin[idx] for idx in idx_list[self.num_set:]])
|
||||
target_list.extend([i]*self.num_set)
|
||||
target_list.extend([i] * self.num_set)
|
||||
return {
|
||||
"support": torch.stack(support_set_list),
|
||||
"query": torch.stack(query_set_list),
|
||||
|
||||
35
data/lmdbify.py
Executable file
35
data/lmdbify.py
Executable file
@ -0,0 +1,35 @@
|
||||
import torch
|
||||
import lmdb
|
||||
import os
|
||||
import pickle
|
||||
from io import BytesIO
|
||||
from data.dataset import CARS, ImprovedImageFolder
|
||||
import torchvision
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def dataset_to_lmdb(dataset, lmdb_path):
|
||||
env = lmdb.open(lmdb_path, map_size=1099511627776 * 2, subdir=os.path.isdir(lmdb_path))
|
||||
with env.begin(write=True) as txn:
|
||||
for i in tqdm(range(len(dataset))):
|
||||
buffer = BytesIO()
|
||||
torch.save(dataset[i], buffer)
|
||||
txn.put("{}".format(i).encode(), buffer.getvalue())
|
||||
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
||||
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
||||
|
||||
|
||||
def main():
|
||||
data_transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize([int(224 * 1.15), int(224 * 1.15)]),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
origin_dataset = ImprovedImageFolder("/data/few-shot/CUB_200_2011/CUB_200_2011/images", transform=data_transform)
|
||||
dataset_to_lmdb(origin_dataset, "/data/few-shot/lmdb/CUB_200_2011/data.lmdb")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
98
test.py
98
test.py
@ -1,10 +1,11 @@
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
import torchvision
|
||||
|
||||
from data import dataset
|
||||
import torch.nn as nn
|
||||
|
||||
from ignite.utils import convert_tensor
|
||||
import time
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def setup_seed(seed):
|
||||
@ -44,67 +45,11 @@ def evaluate(query, target, support):
|
||||
return torch.eq(target, indices).float().mean()
|
||||
|
||||
|
||||
class Flatten(nn.Module):
|
||||
def __init__(self):
|
||||
super(Flatten, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x.view(x.size(0), -1)
|
||||
|
||||
|
||||
def make_extractor():
|
||||
resnet50 = torchvision.models.resnet50(pretrained=True)
|
||||
resnet50.to(torch.device("cuda"))
|
||||
resnet50.fc = torch.nn.Identity()
|
||||
resnet50.eval()
|
||||
|
||||
def extract(images):
|
||||
with torch.no_grad():
|
||||
return resnet50(images)
|
||||
return extract
|
||||
|
||||
|
||||
# def make_extractor():
|
||||
# model = resnet18()
|
||||
# model.to(torch.device("cuda"))
|
||||
# model.eval()
|
||||
#
|
||||
# def extract(images):
|
||||
# with torch.no_grad():
|
||||
# return model(images)
|
||||
# return extract
|
||||
|
||||
|
||||
def resnet18(model_path="ResNet18Official.pth"):
|
||||
"""Constructs a ResNet-18 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model_w_fc = torchvision.models.resnet18(pretrained=False)
|
||||
seq = list(model_w_fc.children())[:-1]
|
||||
seq.append(Flatten())
|
||||
model = torch.nn.Sequential(*seq)
|
||||
# model.load_state_dict(torch.load(model_path), strict=False)
|
||||
model.load_state_dict(torch.load(model_path, map_location ='cpu'), strict=False)
|
||||
# model.load_state_dict(torch.load(model_path))
|
||||
model.eval()
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def test():
|
||||
data_transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize([int(224*1.15), int(224*1.15)]),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
origin_dataset = dataset.CARS("/data/few-shot/STANFORD-CARS/", transform=data_transform)
|
||||
#origin_dataset = dataset.ImprovedImageFolder("/data/few-shot/mini_imagenet_full_size/train", transform=data_transform)
|
||||
def test(lmdb_path):
|
||||
origin_dataset = dataset.LMDBDataset(lmdb_path)
|
||||
|
||||
N = torch.randint(5, 10, (1,)).tolist()[0]
|
||||
K = torch.randint(1, 10, (1,)).tolist()[0]
|
||||
batch_size = 2
|
||||
episodic_dataset = dataset.EpisodicDataset(
|
||||
origin_dataset, # 抽取数据集
|
||||
N, # N
|
||||
@ -113,25 +58,34 @@ def test():
|
||||
)
|
||||
print(episodic_dataset)
|
||||
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=batch_size, pin_memory=True)
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=4, pin_memory=False)
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
extractor = make_extractor()
|
||||
|
||||
from submit import make_model
|
||||
extractor = make_model()
|
||||
extractor.to(device)
|
||||
|
||||
accs = []
|
||||
st = time.time()
|
||||
for item in data_loader:
|
||||
item = convert_tensor(item, device, non_blocking=True)
|
||||
# item["query"]: B x NK x 3 x W x H
|
||||
# item["support"]: B x NK x 3 x W x H
|
||||
# item["target"]: B x NK
|
||||
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N*K, -1)
|
||||
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
||||
with torch.no_grad():
|
||||
for item in tqdm(data_loader, nrows=80):
|
||||
item = convert_tensor(item, device, non_blocking=True)
|
||||
# item["query"]: B x NK x 3 x W x H
|
||||
# item["support"]: B x NK x 3 x W x H
|
||||
# item["target"]: B x NK
|
||||
batch_size = item["target"].size(0)
|
||||
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
|
||||
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
||||
|
||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||
print("time: ", time.time()-st)
|
||||
st = time.time()
|
||||
print(torch.tensor(accs).mean().item())
|
||||
print("time: ", time.time() - st)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
setup_seed(100)
|
||||
test()
|
||||
for path in ["/data/few-shot/lmdb/CUB_200_2011/data.lmdb",
|
||||
"/data/few-shot/lmdb/mini-imagenet/train.lmdb",
|
||||
"/data/few-shot/lmdb/STANFORD-CARS/train.lmdb"]:
|
||||
print(path)
|
||||
test(path)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user