0.01
This commit is contained in:
parent
a89f9226e8
commit
07c63abb30
@ -1,5 +1,9 @@
|
|||||||
from scipy.io import loadmat
|
from scipy.io import loadmat
|
||||||
import torch
|
import torch
|
||||||
|
import lmdb
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
from io import BytesIO
|
||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
from torchvision.datasets.folder import default_loader
|
from torchvision.datasets.folder import default_loader
|
||||||
from torchvision.datasets import ImageFolder
|
from torchvision.datasets import ImageFolder
|
||||||
@ -22,7 +26,7 @@ class CARS(Dataset):
|
|||||||
return len(self.annotations)
|
return len(self.annotations)
|
||||||
|
|
||||||
def __getitem__(self, item):
|
def __getitem__(self, item):
|
||||||
file_name = "{:05d}.jpg".format(item+1)
|
file_name = "{:05d}.jpg".format(item + 1)
|
||||||
target = self.annotations[file_name]
|
target = self.annotations[file_name]
|
||||||
sample = self.loader(self.root / "cars_train" / file_name)
|
sample = self.loader(self.root / "cars_train" / file_name)
|
||||||
if self.transform is not None:
|
if self.transform is not None:
|
||||||
@ -41,6 +45,22 @@ class ImprovedImageFolder(ImageFolder):
|
|||||||
return super().__getitem__(item)[0]
|
return super().__getitem__(item)[0]
|
||||||
|
|
||||||
|
|
||||||
|
class LMDBDataset(Dataset):
|
||||||
|
def __init__(self, lmdb_path):
|
||||||
|
self.db = lmdb.open(lmdb_path, subdir=os.path.isdir(lmdb_path), readonly=True, lock=False,
|
||||||
|
readahead=False, meminit=False)
|
||||||
|
with self.db.begin(write=False) as txn:
|
||||||
|
self.classes_list = pickle.loads(txn.get(b"classes_list"))
|
||||||
|
self._len = pickle.loads(txn.get(b"__len__"))
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self._len
|
||||||
|
|
||||||
|
def __getitem__(self, i):
|
||||||
|
with self.db.begin(write=False) as txn:
|
||||||
|
return torch.load(BytesIO(txn.get("{}".format(i).encode())))
|
||||||
|
|
||||||
|
|
||||||
class EpisodicDataset(Dataset):
|
class EpisodicDataset(Dataset):
|
||||||
def __init__(self, origin_dataset, num_class, num_set, num_episodes):
|
def __init__(self, origin_dataset, num_class, num_set, num_episodes):
|
||||||
self.origin = origin_dataset
|
self.origin = origin_dataset
|
||||||
@ -60,12 +80,12 @@ class EpisodicDataset(Dataset):
|
|||||||
for i, c in enumerate(random_classes):
|
for i, c in enumerate(random_classes):
|
||||||
image_list = self.origin.classes_list[c]
|
image_list = self.origin.classes_list[c]
|
||||||
if len(image_list) > self.num_set * 2:
|
if len(image_list) > self.num_set * 2:
|
||||||
idx_list = torch.randperm(len(image_list))[:self.num_set*2].tolist()
|
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
||||||
else:
|
else:
|
||||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set*2,)).tolist()
|
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
||||||
support_set_list.extend([self.origin[idx] for idx in idx_list[:self.num_set]])
|
support_set_list.extend([self.origin[idx] for idx in idx_list[:self.num_set]])
|
||||||
query_set_list.extend([self.origin[idx] for idx in idx_list[self.num_set:]])
|
query_set_list.extend([self.origin[idx] for idx in idx_list[self.num_set:]])
|
||||||
target_list.extend([i]*self.num_set)
|
target_list.extend([i] * self.num_set)
|
||||||
return {
|
return {
|
||||||
"support": torch.stack(support_set_list),
|
"support": torch.stack(support_set_list),
|
||||||
"query": torch.stack(query_set_list),
|
"query": torch.stack(query_set_list),
|
||||||
|
|||||||
35
data/lmdbify.py
Executable file
35
data/lmdbify.py
Executable file
@ -0,0 +1,35 @@
|
|||||||
|
import torch
|
||||||
|
import lmdb
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
from io import BytesIO
|
||||||
|
from data.dataset import CARS, ImprovedImageFolder
|
||||||
|
import torchvision
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def dataset_to_lmdb(dataset, lmdb_path):
|
||||||
|
env = lmdb.open(lmdb_path, map_size=1099511627776 * 2, subdir=os.path.isdir(lmdb_path))
|
||||||
|
with env.begin(write=True) as txn:
|
||||||
|
for i in tqdm(range(len(dataset))):
|
||||||
|
buffer = BytesIO()
|
||||||
|
torch.save(dataset[i], buffer)
|
||||||
|
txn.put("{}".format(i).encode(), buffer.getvalue())
|
||||||
|
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
||||||
|
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
data_transform = torchvision.transforms.Compose([
|
||||||
|
torchvision.transforms.Resize([int(224 * 1.15), int(224 * 1.15)]),
|
||||||
|
torchvision.transforms.CenterCrop(224),
|
||||||
|
torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
origin_dataset = ImprovedImageFolder("/data/few-shot/CUB_200_2011/CUB_200_2011/images", transform=data_transform)
|
||||||
|
dataset_to_lmdb(origin_dataset, "/data/few-shot/lmdb/CUB_200_2011/data.lmdb")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
||||||
98
test.py
98
test.py
@ -1,10 +1,11 @@
|
|||||||
import torch
|
import torch
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
import torchvision
|
|
||||||
from data import dataset
|
from data import dataset
|
||||||
import torch.nn as nn
|
|
||||||
from ignite.utils import convert_tensor
|
from ignite.utils import convert_tensor
|
||||||
import time
|
import time
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
def setup_seed(seed):
|
def setup_seed(seed):
|
||||||
@ -44,67 +45,11 @@ def evaluate(query, target, support):
|
|||||||
return torch.eq(target, indices).float().mean()
|
return torch.eq(target, indices).float().mean()
|
||||||
|
|
||||||
|
|
||||||
class Flatten(nn.Module):
|
def test(lmdb_path):
|
||||||
def __init__(self):
|
origin_dataset = dataset.LMDBDataset(lmdb_path)
|
||||||
super(Flatten, self).__init__()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return x.view(x.size(0), -1)
|
|
||||||
|
|
||||||
|
|
||||||
def make_extractor():
|
|
||||||
resnet50 = torchvision.models.resnet50(pretrained=True)
|
|
||||||
resnet50.to(torch.device("cuda"))
|
|
||||||
resnet50.fc = torch.nn.Identity()
|
|
||||||
resnet50.eval()
|
|
||||||
|
|
||||||
def extract(images):
|
|
||||||
with torch.no_grad():
|
|
||||||
return resnet50(images)
|
|
||||||
return extract
|
|
||||||
|
|
||||||
|
|
||||||
# def make_extractor():
|
|
||||||
# model = resnet18()
|
|
||||||
# model.to(torch.device("cuda"))
|
|
||||||
# model.eval()
|
|
||||||
#
|
|
||||||
# def extract(images):
|
|
||||||
# with torch.no_grad():
|
|
||||||
# return model(images)
|
|
||||||
# return extract
|
|
||||||
|
|
||||||
|
|
||||||
def resnet18(model_path="ResNet18Official.pth"):
|
|
||||||
"""Constructs a ResNet-18 model.
|
|
||||||
Args:
|
|
||||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
||||||
"""
|
|
||||||
model_w_fc = torchvision.models.resnet18(pretrained=False)
|
|
||||||
seq = list(model_w_fc.children())[:-1]
|
|
||||||
seq.append(Flatten())
|
|
||||||
model = torch.nn.Sequential(*seq)
|
|
||||||
# model.load_state_dict(torch.load(model_path), strict=False)
|
|
||||||
model.load_state_dict(torch.load(model_path, map_location ='cpu'), strict=False)
|
|
||||||
# model.load_state_dict(torch.load(model_path))
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def test():
|
|
||||||
data_transform = torchvision.transforms.Compose([
|
|
||||||
torchvision.transforms.Resize([int(224*1.15), int(224*1.15)]),
|
|
||||||
torchvision.transforms.CenterCrop(224),
|
|
||||||
torchvision.transforms.ToTensor(),
|
|
||||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
|
||||||
])
|
|
||||||
origin_dataset = dataset.CARS("/data/few-shot/STANFORD-CARS/", transform=data_transform)
|
|
||||||
#origin_dataset = dataset.ImprovedImageFolder("/data/few-shot/mini_imagenet_full_size/train", transform=data_transform)
|
|
||||||
|
|
||||||
N = torch.randint(5, 10, (1,)).tolist()[0]
|
N = torch.randint(5, 10, (1,)).tolist()[0]
|
||||||
K = torch.randint(1, 10, (1,)).tolist()[0]
|
K = torch.randint(1, 10, (1,)).tolist()[0]
|
||||||
batch_size = 2
|
|
||||||
episodic_dataset = dataset.EpisodicDataset(
|
episodic_dataset = dataset.EpisodicDataset(
|
||||||
origin_dataset, # 抽取数据集
|
origin_dataset, # 抽取数据集
|
||||||
N, # N
|
N, # N
|
||||||
@ -113,25 +58,34 @@ def test():
|
|||||||
)
|
)
|
||||||
print(episodic_dataset)
|
print(episodic_dataset)
|
||||||
|
|
||||||
data_loader = DataLoader(episodic_dataset, batch_size=batch_size, pin_memory=True)
|
data_loader = DataLoader(episodic_dataset, batch_size=4, pin_memory=False)
|
||||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
extractor = make_extractor()
|
|
||||||
|
from submit import make_model
|
||||||
|
extractor = make_model()
|
||||||
|
extractor.to(device)
|
||||||
|
|
||||||
accs = []
|
accs = []
|
||||||
st = time.time()
|
st = time.time()
|
||||||
for item in data_loader:
|
with torch.no_grad():
|
||||||
item = convert_tensor(item, device, non_blocking=True)
|
for item in tqdm(data_loader, nrows=80):
|
||||||
# item["query"]: B x NK x 3 x W x H
|
item = convert_tensor(item, device, non_blocking=True)
|
||||||
# item["support"]: B x NK x 3 x W x H
|
# item["query"]: B x NK x 3 x W x H
|
||||||
# item["target"]: B x NK
|
# item["support"]: B x NK x 3 x W x H
|
||||||
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N*K, -1)
|
# item["target"]: B x NK
|
||||||
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
batch_size = item["target"].size(0)
|
||||||
|
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
|
||||||
|
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
||||||
|
|
||||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||||
print("time: ", time.time()-st)
|
|
||||||
st = time.time()
|
|
||||||
print(torch.tensor(accs).mean().item())
|
print(torch.tensor(accs).mean().item())
|
||||||
|
print("time: ", time.time() - st)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
setup_seed(100)
|
setup_seed(100)
|
||||||
test()
|
for path in ["/data/few-shot/lmdb/CUB_200_2011/data.lmdb",
|
||||||
|
"/data/few-shot/lmdb/mini-imagenet/train.lmdb",
|
||||||
|
"/data/few-shot/lmdb/STANFORD-CARS/train.lmdb"]:
|
||||||
|
print(path)
|
||||||
|
test(path)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user