This commit is contained in:
Ray Wong 2020-07-06 15:13:46 +08:00
parent 48aadf0c31
commit a89f9226e8

44
test.py
View File

@ -4,6 +4,7 @@ import torchvision
from data import dataset from data import dataset
import torch.nn as nn import torch.nn as nn
from ignite.utils import convert_tensor from ignite.utils import convert_tensor
import time
def setup_seed(seed): def setup_seed(seed):
@ -37,12 +38,9 @@ def evaluate(query, target, support):
:param support: B x N x K x D vector :param support: B x N x K x D vector
:return: :return:
""" """
K = support.size(-2)
prototypes = support.mean(-2) # B x N x D prototypes = support.mean(-2) # B x N x D
distance = euclidean_dist(query, prototypes) # B x NK x N distance = euclidean_dist(query, prototypes) # B x NK x N
print(distance.shape)
indices = distance.argmin(-1) # B x NK indices = distance.argmin(-1) # B x NK
print(indices, target)
return torch.eq(target, indices).float().mean() return torch.eq(target, indices).float().mean()
@ -54,29 +52,29 @@ class Flatten(nn.Module):
return x.view(x.size(0), -1) return x.view(x.size(0), -1)
# def make_extractor():
# resnet50 = torchvision.models.resnet50(pretrained=True)
# resnet50.to(torch.device("cuda"))
# resnet50.fc = torch.nn.Identity()
# resnet50.eval()
#
# def extract(images):
# with torch.no_grad():
# return resnet50(images)
# return extract
def make_extractor(): def make_extractor():
model = resnet18() resnet50 = torchvision.models.resnet50(pretrained=True)
model.to(torch.device("cuda")) resnet50.to(torch.device("cuda"))
model.eval() resnet50.fc = torch.nn.Identity()
resnet50.eval()
def extract(images): def extract(images):
with torch.no_grad(): with torch.no_grad():
return model(images) return resnet50(images)
return extract return extract
# def make_extractor():
# model = resnet18()
# model.to(torch.device("cuda"))
# model.eval()
#
# def extract(images):
# with torch.no_grad():
# return model(images)
# return extract
def resnet18(model_path="ResNet18Official.pth"): def resnet18(model_path="ResNet18Official.pth"):
"""Constructs a ResNet-18 model. """Constructs a ResNet-18 model.
Args: Args:
@ -115,20 +113,22 @@ def test():
) )
print(episodic_dataset) print(episodic_dataset)
data_loader = DataLoader(episodic_dataset, batch_size=batch_size) data_loader = DataLoader(episodic_dataset, batch_size=batch_size, pin_memory=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
extractor = make_extractor() extractor = make_extractor()
accs = [] accs = []
st = time.time()
for item in data_loader: for item in data_loader:
item = convert_tensor(item, device) item = convert_tensor(item, device, non_blocking=True)
# item["query"]: B x NK x 3 x W x H # item["query"]: B x NK x 3 x W x H
# item["support"]: B x NK x 3 x W x H # item["support"]: B x NK x 3 x W x H
# item["target"]: B x NK # item["target"]: B x NK
print(item["support"].shape, item["target"].shape)
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N*K, -1) query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N*K, -1)
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1) support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
accs.append(evaluate(query_batch, item["target"], support_batch)) accs.append(evaluate(query_batch, item["target"], support_batch))
print("time: ", time.time()-st)
st = time.time()
print(torch.tensor(accs).mean().item()) print(torch.tensor(accs).mean().item())