test
This commit is contained in:
commit
bf201c506d
2
.gitignore
vendored
Executable file
2
.gitignore
vendored
Executable file
@ -0,0 +1,2 @@
|
||||
*.pth
|
||||
.idea/
|
||||
0
data/__init__.py
Executable file
0
data/__init__.py
Executable file
68
data/dataset.py
Executable file
68
data/dataset.py
Executable file
@ -0,0 +1,68 @@
|
||||
from scipy.io import loadmat
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.folder import default_loader
|
||||
from torchvision.datasets import ImageFolder
|
||||
from pathlib import Path
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class CARS(Dataset):
|
||||
def __init__(self, root, loader=default_loader, transform=None):
|
||||
self.root = Path(root)
|
||||
self.transform = transform
|
||||
self.loader = loader
|
||||
self.annotations = loadmat(self.root / "devkit/cars_train_annos.mat")["annotations"][0]
|
||||
self.annotations = {d[-1].item(): d[-2].item() - 1 for d in self.annotations}
|
||||
self.classes_list = defaultdict(list)
|
||||
for i in range(len(self.annotations)):
|
||||
self.classes_list[self.annotations["{:05d}.jpg".format(i + 1)]].append(i)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotations)
|
||||
|
||||
def __getitem__(self, item):
|
||||
file_name = "{:05d}.jpg".format(item+1)
|
||||
target = self.annotations[file_name]
|
||||
sample = self.loader(self.root / "cars_train" / file_name)
|
||||
if self.transform is not None:
|
||||
sample = self.transform(sample)
|
||||
return sample
|
||||
|
||||
|
||||
class ImprovedImageFolder(ImageFolder):
|
||||
def __init__(self, root, loader=default_loader, transform=None):
|
||||
super().__init__(root, transform, loader=loader)
|
||||
self.classes_list = defaultdict(list)
|
||||
for i in range(len(self)):
|
||||
self.classes_list[self.samples[i][-1]].append(i)
|
||||
|
||||
def __getitem__(self, item):
|
||||
return super().__getitem__(item)[0]
|
||||
|
||||
|
||||
class EpisodicDataset(Dataset):
|
||||
def __init__(self, origin_dataset, num_class, num_set, num_episodes):
|
||||
self.origin = origin_dataset
|
||||
self.num_class = num_class
|
||||
assert self.num_class < len(self.origin.classes_list)
|
||||
self.num_set = num_set*2 # 2*K
|
||||
self.num_episodes = num_episodes
|
||||
|
||||
def __len__(self):
|
||||
return self.num_episodes
|
||||
|
||||
def __getitem__(self, _):
|
||||
random_classes = torch.randint(high=len(self.origin.classes_list), size=(self.num_class,)).tolist()
|
||||
item = {}
|
||||
for i in random_classes:
|
||||
image_list = self.origin.classes_list[i]
|
||||
if len(image_list) > self.num_set:
|
||||
idx_list = torch.randperm(len(image_list))[:self.num_set].tolist()
|
||||
else:
|
||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set,)).tolist()
|
||||
item[i] = [self.origin[idx] for idx in idx_list]
|
||||
return item
|
||||
|
||||
def __repr__(self):
|
||||
return "<EpisodicDataset N={} K={} NUM={}>".format(self.num_class, self.num_set, self.num_episodes)
|
||||
137
test.py
Executable file
137
test.py
Executable file
@ -0,0 +1,137 @@
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
import torchvision
|
||||
from data import dataset
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def setup_seed(seed):
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
|
||||
def euclidean_dist(x, y):
|
||||
"""
|
||||
Compute euclidean distance between two tensors
|
||||
"""
|
||||
# x: N x D
|
||||
# y: M x D
|
||||
n = x.size(0)
|
||||
m = y.size(0)
|
||||
d = x.size(1)
|
||||
if d != y.size(1):
|
||||
raise Exception
|
||||
|
||||
x = x.unsqueeze(1).expand(n, m, d)
|
||||
y = y.unsqueeze(0).expand(n, m, d)
|
||||
|
||||
return torch.pow(x - y, 2).sum(2)
|
||||
|
||||
|
||||
def evaluate(query, target, support):
|
||||
"""
|
||||
:param query: NK x D vector
|
||||
:param target: NK x 1 vector
|
||||
:param support: N x K x D vector
|
||||
:return:
|
||||
"""
|
||||
prototypes = support.mean(1)
|
||||
distance = euclidean_dist(query, prototypes)
|
||||
indices = distance.argmin(1)
|
||||
return torch.eq(target, indices).float().mean()
|
||||
|
||||
|
||||
class Flatten(nn.Module):
|
||||
def __init__(self):
|
||||
super(Flatten, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x.view(x.size(0), -1)
|
||||
|
||||
# def make_extractor():
|
||||
# resnet50 = torchvision.models.resnet50(pretrained=True)
|
||||
# resnet50.to(torch.device("cuda"))
|
||||
# resnet50.fc = torch.nn.Identity()
|
||||
# resnet50.eval()
|
||||
#
|
||||
# def extract(images):
|
||||
# with torch.no_grad():
|
||||
# return resnet50(images)
|
||||
# return extract
|
||||
|
||||
|
||||
def make_extractor():
|
||||
model = resnet18()
|
||||
model.to(torch.device("cuda"))
|
||||
model.eval()
|
||||
|
||||
def extract(images):
|
||||
with torch.no_grad():
|
||||
return model(images)
|
||||
return extract
|
||||
|
||||
|
||||
def resnet18(model_path="ResNet18Official.pth"):
|
||||
"""Constructs a ResNet-18 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model_w_fc = torchvision.models.resnet18(pretrained=False)
|
||||
seq = list(model_w_fc.children())[:-1]
|
||||
seq.append(Flatten())
|
||||
model = torch.nn.Sequential(*seq)
|
||||
# model.load_state_dict(torch.load(model_path), strict=False)
|
||||
model.load_state_dict(torch.load(model_path, map_location ='cpu'), strict=False)
|
||||
# model.load_state_dict(torch.load(model_path))
|
||||
model.eval()
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def test():
|
||||
data_transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize([int(224*1.15), int(224*1.15)]),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
origin_dataset = dataset.CARS("/data/few-shot/STANFORD-CARS/", transform=data_transform)
|
||||
|
||||
episodic_dataset = dataset.EpisodicDataset(
|
||||
origin_dataset, # 抽取数据集
|
||||
torch.randint(5, 10, (1,)).tolist()[0], # N
|
||||
torch.randint(1, 10, (1,)).tolist()[0], # K
|
||||
5 # 任务数目
|
||||
)
|
||||
print(episodic_dataset)
|
||||
|
||||
data_loader = DataLoader(episodic_dataset)
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
extractor = make_extractor()
|
||||
accs = []
|
||||
for item in data_loader:
|
||||
support_list = []
|
||||
query_list = []
|
||||
class_id_list = []
|
||||
for class_id in item:
|
||||
for i in range(len(item[class_id])):
|
||||
item[class_id][i] = item[class_id][i].to(device)
|
||||
num_support_set = len(item[class_id]) // 2
|
||||
num_query_set = len(item[class_id]) - num_support_set
|
||||
support_list.append(torch.stack([extractor(pair) for pair in item[class_id][:num_support_set]]))
|
||||
query_list.append(torch.stack([extractor(pair) for pair in item[class_id][num_support_set:]]))
|
||||
class_id_list.extend([class_id]*num_query_set)
|
||||
|
||||
query = torch.squeeze(torch.cat(query_list)).to(device)
|
||||
support = torch.squeeze(torch.stack(support_list)).to(device)
|
||||
target = torch.squeeze(torch.tensor(class_id_list)).to(device)
|
||||
|
||||
accs.append(evaluate(query, target, support))
|
||||
|
||||
print(accs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
setup_seed(10)
|
||||
test()
|
||||
Loading…
Reference in New Issue
Block a user