This commit is contained in:
Ray Wong 2020-07-05 23:20:45 +08:00
commit bf201c506d
4 changed files with 207 additions and 0 deletions

2
.gitignore vendored Executable file
View File

@ -0,0 +1,2 @@
*.pth
.idea/

0
data/__init__.py Executable file
View File

68
data/dataset.py Executable file
View File

@ -0,0 +1,68 @@
from scipy.io import loadmat
import torch
from torch.utils.data import Dataset
from torchvision.datasets.folder import default_loader
from torchvision.datasets import ImageFolder
from pathlib import Path
from collections import defaultdict
class CARS(Dataset):
def __init__(self, root, loader=default_loader, transform=None):
self.root = Path(root)
self.transform = transform
self.loader = loader
self.annotations = loadmat(self.root / "devkit/cars_train_annos.mat")["annotations"][0]
self.annotations = {d[-1].item(): d[-2].item() - 1 for d in self.annotations}
self.classes_list = defaultdict(list)
for i in range(len(self.annotations)):
self.classes_list[self.annotations["{:05d}.jpg".format(i + 1)]].append(i)
def __len__(self):
return len(self.annotations)
def __getitem__(self, item):
file_name = "{:05d}.jpg".format(item+1)
target = self.annotations[file_name]
sample = self.loader(self.root / "cars_train" / file_name)
if self.transform is not None:
sample = self.transform(sample)
return sample
class ImprovedImageFolder(ImageFolder):
def __init__(self, root, loader=default_loader, transform=None):
super().__init__(root, transform, loader=loader)
self.classes_list = defaultdict(list)
for i in range(len(self)):
self.classes_list[self.samples[i][-1]].append(i)
def __getitem__(self, item):
return super().__getitem__(item)[0]
class EpisodicDataset(Dataset):
def __init__(self, origin_dataset, num_class, num_set, num_episodes):
self.origin = origin_dataset
self.num_class = num_class
assert self.num_class < len(self.origin.classes_list)
self.num_set = num_set*2 # 2*K
self.num_episodes = num_episodes
def __len__(self):
return self.num_episodes
def __getitem__(self, _):
random_classes = torch.randint(high=len(self.origin.classes_list), size=(self.num_class,)).tolist()
item = {}
for i in random_classes:
image_list = self.origin.classes_list[i]
if len(image_list) > self.num_set:
idx_list = torch.randperm(len(image_list))[:self.num_set].tolist()
else:
idx_list = torch.randint(high=len(image_list), size=(self.num_set,)).tolist()
item[i] = [self.origin[idx] for idx in idx_list]
return item
def __repr__(self):
return "<EpisodicDataset N={} K={} NUM={}>".format(self.num_class, self.num_set, self.num_episodes)

137
test.py Executable file
View File

@ -0,0 +1,137 @@
import torch
from torch.utils.data import DataLoader
import torchvision
from data import dataset
import torch.nn as nn
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def euclidean_dist(x, y):
"""
Compute euclidean distance between two tensors
"""
# x: N x D
# y: M x D
n = x.size(0)
m = y.size(0)
d = x.size(1)
if d != y.size(1):
raise Exception
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
return torch.pow(x - y, 2).sum(2)
def evaluate(query, target, support):
"""
:param query: NK x D vector
:param target: NK x 1 vector
:param support: N x K x D vector
:return:
"""
prototypes = support.mean(1)
distance = euclidean_dist(query, prototypes)
indices = distance.argmin(1)
return torch.eq(target, indices).float().mean()
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
# def make_extractor():
# resnet50 = torchvision.models.resnet50(pretrained=True)
# resnet50.to(torch.device("cuda"))
# resnet50.fc = torch.nn.Identity()
# resnet50.eval()
#
# def extract(images):
# with torch.no_grad():
# return resnet50(images)
# return extract
def make_extractor():
model = resnet18()
model.to(torch.device("cuda"))
model.eval()
def extract(images):
with torch.no_grad():
return model(images)
return extract
def resnet18(model_path="ResNet18Official.pth"):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model_w_fc = torchvision.models.resnet18(pretrained=False)
seq = list(model_w_fc.children())[:-1]
seq.append(Flatten())
model = torch.nn.Sequential(*seq)
# model.load_state_dict(torch.load(model_path), strict=False)
model.load_state_dict(torch.load(model_path, map_location ='cpu'), strict=False)
# model.load_state_dict(torch.load(model_path))
model.eval()
return model
def test():
data_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize([int(224*1.15), int(224*1.15)]),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
origin_dataset = dataset.CARS("/data/few-shot/STANFORD-CARS/", transform=data_transform)
episodic_dataset = dataset.EpisodicDataset(
origin_dataset, # 抽取数据集
torch.randint(5, 10, (1,)).tolist()[0], # N
torch.randint(1, 10, (1,)).tolist()[0], # K
5 # 任务数目
)
print(episodic_dataset)
data_loader = DataLoader(episodic_dataset)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
extractor = make_extractor()
accs = []
for item in data_loader:
support_list = []
query_list = []
class_id_list = []
for class_id in item:
for i in range(len(item[class_id])):
item[class_id][i] = item[class_id][i].to(device)
num_support_set = len(item[class_id]) // 2
num_query_set = len(item[class_id]) - num_support_set
support_list.append(torch.stack([extractor(pair) for pair in item[class_id][:num_support_set]]))
query_list.append(torch.stack([extractor(pair) for pair in item[class_id][num_support_set:]]))
class_id_list.extend([class_id]*num_query_set)
query = torch.squeeze(torch.cat(query_list)).to(device)
support = torch.squeeze(torch.stack(support_list)).to(device)
target = torch.squeeze(torch.tensor(class_id_list)).to(device)
accs.append(evaluate(query, target, support))
print(accs)
if __name__ == '__main__':
setup_seed(10)
test()