Compare commits
2 Commits
598bd9e0f1
...
3a72dcb5f0
| Author | SHA1 | Date | |
|---|---|---|---|
| 3a72dcb5f0 | |||
| 7d720c181b |
5
.gitignore
vendored
5
.gitignore
vendored
@ -1,2 +1,3 @@
|
|||||||
*.pth
|
*.pth
|
||||||
.idea/
|
.idea/
|
||||||
|
submit/
|
||||||
209
data/dataset.py
209
data/dataset.py
@ -1,101 +1,108 @@
|
|||||||
from scipy.io import loadmat
|
from scipy.io import loadmat
|
||||||
import torch
|
import torch
|
||||||
import lmdb
|
import lmdb
|
||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
from io import BytesIO
|
from PIL import Image
|
||||||
from torch.utils.data import Dataset
|
from io import BytesIO
|
||||||
from torchvision.datasets.folder import default_loader
|
from torch.utils.data import Dataset
|
||||||
from torchvision.datasets import ImageFolder
|
from torchvision.datasets.folder import default_loader
|
||||||
from pathlib import Path
|
from torchvision.datasets import ImageFolder
|
||||||
from collections import defaultdict
|
from pathlib import Path
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
class CARS(Dataset):
|
|
||||||
def __init__(self, root, loader=default_loader, transform=None):
|
class CARS(Dataset):
|
||||||
self.root = Path(root)
|
def __init__(self, root, loader=default_loader, transform=None):
|
||||||
self.transform = transform
|
self.root = Path(root)
|
||||||
self.loader = loader
|
self.transform = transform
|
||||||
self.annotations = loadmat(self.root / "devkit/cars_train_annos.mat")["annotations"][0]
|
self.loader = loader
|
||||||
self.annotations = {d[-1].item(): d[-2].item() - 1 for d in self.annotations}
|
self.annotations = loadmat(self.root / "devkit/cars_train_annos.mat")["annotations"][0]
|
||||||
self.classes_list = defaultdict(list)
|
self.annotations = {d[-1].item(): d[-2].item() - 1 for d in self.annotations}
|
||||||
for i in range(len(self.annotations)):
|
self.classes_list = defaultdict(list)
|
||||||
self.classes_list[self.annotations["{:05d}.jpg".format(i + 1)]].append(i)
|
for i in range(len(self.annotations)):
|
||||||
|
self.classes_list[self.annotations["{:05d}.jpg".format(i + 1)]].append(i)
|
||||||
def __len__(self):
|
|
||||||
return len(self.annotations)
|
def __len__(self):
|
||||||
|
return len(self.annotations)
|
||||||
def __getitem__(self, item):
|
|
||||||
file_name = "{:05d}.jpg".format(item + 1)
|
def __getitem__(self, item):
|
||||||
target = self.annotations[file_name]
|
file_name = "{:05d}.jpg".format(item + 1)
|
||||||
sample = self.loader(self.root / "cars_train" / file_name)
|
target = self.annotations[file_name]
|
||||||
if self.transform is not None:
|
sample = self.loader(self.root / "cars_train" / file_name)
|
||||||
sample = self.transform(sample)
|
if self.transform is not None:
|
||||||
return sample
|
sample = self.transform(sample)
|
||||||
|
return sample
|
||||||
|
|
||||||
class ImprovedImageFolder(ImageFolder):
|
|
||||||
def __init__(self, root, loader=default_loader, transform=None):
|
class ImprovedImageFolder(ImageFolder):
|
||||||
super().__init__(root, transform, loader=loader)
|
def __init__(self, root, loader=default_loader, transform=None):
|
||||||
self.classes_list = defaultdict(list)
|
super().__init__(root, transform, loader=loader)
|
||||||
for i in range(len(self)):
|
self.classes_list = defaultdict(list)
|
||||||
self.classes_list[self.samples[i][-1]].append(i)
|
for i in range(len(self)):
|
||||||
assert len(self.classes_list) == len(self.classes)
|
self.classes_list[self.samples[i][-1]].append(i)
|
||||||
|
assert len(self.classes_list) == len(self.classes)
|
||||||
def __getitem__(self, item):
|
|
||||||
return super().__getitem__(item)[0]
|
def __getitem__(self, item):
|
||||||
|
return super().__getitem__(item)[0]
|
||||||
|
|
||||||
class LMDBDataset(Dataset):
|
|
||||||
def __init__(self, lmdb_path, transform=None):
|
class LMDBDataset(Dataset):
|
||||||
self.db = lmdb.open(lmdb_path, map_size=1099511627776, subdir=os.path.isdir(lmdb_path), readonly=True,
|
def __init__(self, lmdb_path, transform=None):
|
||||||
lock=False, readahead=False, meminit=False)
|
self.db = lmdb.open(lmdb_path, map_size=1099511627776, subdir=os.path.isdir(lmdb_path), readonly=True,
|
||||||
self.transform = transform
|
lock=False, readahead=False, meminit=False)
|
||||||
with self.db.begin(write=False) as txn:
|
self.transform = transform
|
||||||
self.classes_list = pickle.loads(txn.get(b"classes_list"))
|
with self.db.begin(write=False) as txn:
|
||||||
self._len = pickle.loads(txn.get(b"__len__"))
|
self.classes_list = pickle.loads(txn.get(b"classes_list"))
|
||||||
|
self._len = pickle.loads(txn.get(b"__len__"))
|
||||||
def __len__(self):
|
|
||||||
return self._len
|
def __len__(self):
|
||||||
|
return self._len
|
||||||
def __getitem__(self, i):
|
|
||||||
with self.db.begin(write=False) as txn:
|
def __getitem__(self, i):
|
||||||
sample = torch.load(BytesIO(txn.get("{}".format(i).encode())))
|
with self.db.begin(write=False) as txn:
|
||||||
if self.transform is not None:
|
sample = Image.open(BytesIO(txn.get("{}".format(i).encode())))
|
||||||
sample = self.transform(sample)
|
if sample.mode != "RGB":
|
||||||
return sample
|
sample = sample.convert("RGB")
|
||||||
|
if self.transform is not None:
|
||||||
|
try:
|
||||||
class EpisodicDataset(Dataset):
|
sample = self.transform(sample)
|
||||||
def __init__(self, origin_dataset, num_class, num_set, num_episodes):
|
except RuntimeError as re:
|
||||||
self.origin = origin_dataset
|
print(sample.format, sample.size, sample.mode)
|
||||||
self.num_class = num_class
|
raise re
|
||||||
assert self.num_class < len(self.origin.classes_list)
|
return sample
|
||||||
self.num_set = num_set # K
|
|
||||||
self.num_episodes = num_episodes
|
|
||||||
|
class EpisodicDataset(Dataset):
|
||||||
def __len__(self):
|
def __init__(self, origin_dataset, num_class, num_set, num_episodes):
|
||||||
return self.num_episodes
|
self.origin = origin_dataset
|
||||||
|
self.num_class = num_class
|
||||||
def __getitem__(self, _):
|
assert self.num_class < len(self.origin.classes_list)
|
||||||
random_classes = torch.randperm(len(self.origin.classes_list))[:self.num_class].tolist()
|
self.num_set = num_set # K
|
||||||
support_set_list = []
|
self.num_episodes = num_episodes
|
||||||
query_set_list = []
|
|
||||||
target_list = []
|
def __len__(self):
|
||||||
for i, c in enumerate(random_classes):
|
return self.num_episodes
|
||||||
image_list = self.origin.classes_list[c]
|
|
||||||
if len(image_list) > self.num_set * 2:
|
def __getitem__(self, _):
|
||||||
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
random_classes = torch.randperm(len(self.origin.classes_list))[:self.num_class].tolist()
|
||||||
else:
|
support_set_list = []
|
||||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
query_set_list = []
|
||||||
support_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[:self.num_set]])
|
target_list = []
|
||||||
query_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[self.num_set:]])
|
for i, c in enumerate(random_classes):
|
||||||
target_list.extend([i] * self.num_set)
|
image_list = self.origin.classes_list[c]
|
||||||
return {
|
if len(image_list) > self.num_set * 2:
|
||||||
"support": torch.stack(support_set_list),
|
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
||||||
"query": torch.stack(query_set_list),
|
else:
|
||||||
"target": torch.tensor(target_list)
|
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
||||||
}
|
support_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[:self.num_set]])
|
||||||
|
query_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[self.num_set:]])
|
||||||
def __repr__(self):
|
target_list.extend([i] * self.num_set)
|
||||||
return "<EpisodicDataset N={} K={} NUM={}>".format(self.num_class, self.num_set, self.num_episodes)
|
return {
|
||||||
|
"support": torch.stack(support_set_list),
|
||||||
|
"query": torch.stack(query_set_list),
|
||||||
|
"target": torch.tensor(target_list)
|
||||||
|
}
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return "<EpisodicDataset N={} K={} NUM={}>".format(self.num_class, self.num_set, self.num_episodes)
|
||||||
|
|||||||
@ -1,43 +1,38 @@
|
|||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
import torch
|
import lmdb
|
||||||
import lmdb
|
from data.dataset import CARS, ImprovedImageFolder
|
||||||
from data.dataset import CARS, ImprovedImageFolder
|
from tqdm import tqdm
|
||||||
import torchvision
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
def content_loader(path):
|
||||||
|
with open(path, "rb") as f:
|
||||||
def dataset_to_lmdb(dataset, lmdb_path):
|
return f.read()
|
||||||
env = lmdb.open(lmdb_path, map_size=1099511627776, subdir=os.path.isdir(lmdb_path))
|
|
||||||
with env.begin(write=True) as txn:
|
|
||||||
for i in tqdm(range(len(dataset)), ncols=50):
|
def dataset_to_lmdb(dataset, lmdb_path):
|
||||||
buffer = BytesIO()
|
env = lmdb.open(lmdb_path, map_size=1099511627776*2, subdir=os.path.isdir(lmdb_path))
|
||||||
torch.save(dataset[i], buffer)
|
with env.begin(write=True) as txn:
|
||||||
txn.put("{}".format(i).encode(), buffer.getvalue())
|
for i in tqdm(range(len(dataset)), ncols=50):
|
||||||
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
txn.put("{}".format(i).encode(), bytearray(dataset[i]))
|
||||||
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
||||||
|
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
||||||
|
|
||||||
def transform(save_path, dataset_path):
|
|
||||||
print(save_path, dataset_path)
|
def transform(save_path, dataset_path):
|
||||||
dt = torchvision.transforms.Compose([
|
print(save_path, dataset_path)
|
||||||
torchvision.transforms.Resize((256, 256)),
|
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", loader=content_loader)
|
||||||
torchvision.transforms.CenterCrop(224),
|
origin_dataset = ImprovedImageFolder(dataset_path, loader=content_loader)
|
||||||
torchvision.transforms.ToTensor(),
|
dataset_to_lmdb(origin_dataset, save_path)
|
||||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
||||||
])
|
|
||||||
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", transform=dt)
|
if __name__ == '__main__':
|
||||||
origin_dataset = ImprovedImageFolder(dataset_path, transform=dt)
|
parser = argparse.ArgumentParser(description="transform dataset to lmdb database")
|
||||||
dataset_to_lmdb(origin_dataset, save_path)
|
parser.add_argument('--save', required=True)
|
||||||
|
parser.add_argument('--dataset', required=True)
|
||||||
|
args = parser.parse_args()
|
||||||
if __name__ == '__main__':
|
transform(args.save, args.dataset)
|
||||||
parser = argparse.ArgumentParser(description="transform dataset to lmdb database")
|
|
||||||
parser.add_argument('--save', required=True)
|
|
||||||
parser.add_argument('--dataset', required=True)
|
|
||||||
args = parser.parse_args()
|
|
||||||
transform(args.save, args.dataset)
|
|
||||||
|
|
||||||
|
|||||||
209
test.py
209
test.py
@ -1,105 +1,104 @@
|
|||||||
import torch
|
import torch
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from torchvision import transforms
|
import torchvision
|
||||||
from data import dataset
|
from data import dataset
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
from ignite.utils import convert_tensor
|
from ignite.utils import convert_tensor
|
||||||
import time
|
import time
|
||||||
from importlib import import_module
|
from importlib import import_module
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
def setup_seed(seed):
|
def setup_seed(seed):
|
||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
torch.cuda.manual_seed_all(seed)
|
torch.cuda.manual_seed_all(seed)
|
||||||
torch.backends.cudnn.deterministic = True
|
torch.backends.cudnn.deterministic = True
|
||||||
|
|
||||||
|
|
||||||
def euclidean_dist(x, y):
|
def euclidean_dist(x, y):
|
||||||
"""
|
"""
|
||||||
Compute euclidean distance between two tensors
|
Compute euclidean distance between two tensors
|
||||||
"""
|
"""
|
||||||
# x: B x N x D
|
# x: B x N x D
|
||||||
# y: B x M x D
|
# y: B x M x D
|
||||||
n = x.size(-2)
|
n = x.size(-2)
|
||||||
m = y.size(-2)
|
m = y.size(-2)
|
||||||
d = x.size(-1)
|
d = x.size(-1)
|
||||||
if d != y.size(-1):
|
if d != y.size(-1):
|
||||||
raise Exception
|
raise Exception
|
||||||
|
|
||||||
x = x.unsqueeze(2).expand(x.size(0), n, m, d) # B x N x M x D
|
x = x.unsqueeze(2).expand(x.size(0), n, m, d) # B x N x M x D
|
||||||
y = y.unsqueeze(1).expand(x.size(0), n, m, d)
|
y = y.unsqueeze(1).expand(x.size(0), n, m, d)
|
||||||
|
|
||||||
return torch.pow(x - y, 2).sum(-1)
|
return torch.pow(x - y, 2).sum(-1)
|
||||||
|
|
||||||
|
|
||||||
def evaluate(query, target, support):
|
def evaluate(query, target, support):
|
||||||
"""
|
"""
|
||||||
:param query: B x NK x D vector
|
:param query: B x NK x D vector
|
||||||
:param target: B x NK vector
|
:param target: B x NK vector
|
||||||
:param support: B x N x K x D vector
|
:param support: B x N x K x D vector
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
prototypes = support.mean(-2) # B x N x D
|
prototypes = support.mean(-2) # B x N x D
|
||||||
distance = euclidean_dist(query, prototypes) # B x NK x N
|
distance = euclidean_dist(query, prototypes) # B x NK x N
|
||||||
indices = distance.argmin(-1) # B x NK
|
indices = distance.argmin(-1) # B x NK
|
||||||
return torch.eq(target, indices).float().mean()
|
return torch.eq(target, indices).float().mean()
|
||||||
|
|
||||||
|
|
||||||
def test(lmdb_path, import_path):
|
def test(lmdb_path, import_path):
|
||||||
origin_dataset = dataset.LMDBDataset(lmdb_path)
|
dt = torchvision.transforms.Compose([
|
||||||
N = 5
|
torchvision.transforms.Resize((256, 256)),
|
||||||
K = 5
|
torchvision.transforms.CenterCrop(224),
|
||||||
episodic_dataset = dataset.EpisodicDataset(
|
torchvision.transforms.ToTensor(),
|
||||||
origin_dataset, # 抽取数据集
|
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
N, # N
|
])
|
||||||
K, # K
|
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=dt)
|
||||||
100 # 任务数目
|
N = 5
|
||||||
)
|
K = 5
|
||||||
print(episodic_dataset)
|
episodic_dataset = dataset.EpisodicDataset(
|
||||||
|
origin_dataset, # 抽取数据集
|
||||||
data_loader = DataLoader(episodic_dataset, batch_size=16, pin_memory=False)
|
N, # N
|
||||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
K, # K
|
||||||
|
100 # 任务数目
|
||||||
submit = import_module(f"submit.{import_path}")
|
)
|
||||||
|
print(episodic_dataset)
|
||||||
extractor = submit.make_model()
|
|
||||||
extractor.to(device)
|
data_loader = DataLoader(episodic_dataset, batch_size=20, pin_memory=False)
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
accs = []
|
|
||||||
|
submit = import_module(f"submit.{import_path}")
|
||||||
load_st = time.time()
|
|
||||||
with torch.no_grad():
|
extractor = submit.make_model()
|
||||||
for item in data_loader:
|
extractor.to(device)
|
||||||
st = time.time()
|
|
||||||
print("load", time.time() - load_st)
|
accs = []
|
||||||
item = convert_tensor(item, device, non_blocking=True)
|
|
||||||
# item["query"]: B x NK x 3 x W x H
|
with torch.no_grad():
|
||||||
# item["support"]: B x NK x 3 x W x H
|
for item in tqdm(data_loader):
|
||||||
# item["target"]: B x NK
|
item = convert_tensor(item, device, non_blocking=True)
|
||||||
batch_size = item["target"].size(0)
|
# item["query"]: B x NK x 3 x W x H
|
||||||
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
|
# item["support"]: B x NK x 3 x W x H
|
||||||
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
# item["target"]: B x NK
|
||||||
print("compute", time.time() - st)
|
batch_size = item["target"].size(0)
|
||||||
load_st = time.time()
|
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
|
||||||
|
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
||||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||||
print(torch.tensor(accs).mean().item())
|
print(torch.tensor(accs).mean().item())
|
||||||
print("time: ", time.time() - st)
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
if __name__ == '__main__':
|
setup_seed(100)
|
||||||
setup_seed(100)
|
defined_path = [
|
||||||
defined_path = ["/data/few-shot/lmdb/mini-imagenet/val.lmdb",
|
"/data/few-shot/lmdb/dogs/data.lmdb",
|
||||||
"/data/few-shot/lmdb/CUB_200_2011/data.lmdb",
|
"/data/few-shot/lmdb/flowers/data.lmdb",
|
||||||
"/data/few-shot/lmdb/STANFORD-CARS/train.lmdb",
|
"/data/few-shot/lmdb/256-object/data.lmdb",
|
||||||
# "/data/few-shot/lmdb/Plantae/data.lmdb",
|
"/data/few-shot/lmdb/dtd/data.lmdb",
|
||||||
# "/data/few-shot/lmdb/Places365/val.lmdb"
|
]
|
||||||
]
|
parser = argparse.ArgumentParser(description="test")
|
||||||
parser = argparse.ArgumentParser(description="test")
|
parser.add_argument('-i', "--import_path", required=True)
|
||||||
parser.add_argument('-i', "--import_path", required=True)
|
args = parser.parse_args()
|
||||||
args = parser.parse_args()
|
for path in defined_path:
|
||||||
for path in defined_path:
|
print(path)
|
||||||
print(path)
|
test(path, args.import_path)
|
||||||
test(path, args.import_path)
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user