Compare commits

...

2 Commits

Author SHA1 Message Date
3a72dcb5f0 change line ending 2020-07-20 11:02:39 +08:00
7d720c181b 1 2020-07-16 16:07:03 +08:00
4 changed files with 253 additions and 251 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
*.pth
.idea/
submit/

View File

@ -3,6 +3,7 @@ import torch
import lmdb
import os
import pickle
from PIL import Image
from io import BytesIO
from torch.utils.data import Dataset
from torchvision.datasets.folder import default_loader
@ -60,9 +61,15 @@ class LMDBDataset(Dataset):
def __getitem__(self, i):
with self.db.begin(write=False) as txn:
sample = torch.load(BytesIO(txn.get("{}".format(i).encode())))
sample = Image.open(BytesIO(txn.get("{}".format(i).encode())))
if sample.mode != "RGB":
sample = sample.convert("RGB")
if self.transform is not None:
sample = self.transform(sample)
try:
sample = self.transform(sample)
except RuntimeError as re:
print(sample.format, sample.size, sample.mode)
raise re
return sample

View File

@ -3,34 +3,29 @@ import pickle
from io import BytesIO
import argparse
import torch
import lmdb
from data.dataset import CARS, ImprovedImageFolder
import torchvision
from tqdm import tqdm
def content_loader(path):
with open(path, "rb") as f:
return f.read()
def dataset_to_lmdb(dataset, lmdb_path):
env = lmdb.open(lmdb_path, map_size=1099511627776, subdir=os.path.isdir(lmdb_path))
env = lmdb.open(lmdb_path, map_size=1099511627776*2, subdir=os.path.isdir(lmdb_path))
with env.begin(write=True) as txn:
for i in tqdm(range(len(dataset)), ncols=50):
buffer = BytesIO()
torch.save(dataset[i], buffer)
txn.put("{}".format(i).encode(), buffer.getvalue())
txn.put("{}".format(i).encode(), bytearray(dataset[i]))
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
txn.put(b"__len__", pickle.dumps(len(dataset)))
def transform(save_path, dataset_path):
print(save_path, dataset_path)
dt = torchvision.transforms.Compose([
torchvision.transforms.Resize((256, 256)),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", transform=dt)
origin_dataset = ImprovedImageFolder(dataset_path, transform=dt)
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", loader=content_loader)
origin_dataset = ImprovedImageFolder(dataset_path, loader=content_loader)
dataset_to_lmdb(origin_dataset, save_path)

33
test.py
View File

@ -1,6 +1,6 @@
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
from data import dataset
import argparse
@ -48,7 +48,13 @@ def evaluate(query, target, support):
def test(lmdb_path, import_path):
origin_dataset = dataset.LMDBDataset(lmdb_path)
dt = torchvision.transforms.Compose([
torchvision.transforms.Resize((256, 256)),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=dt)
N = 5
K = 5
episodic_dataset = dataset.EpisodicDataset(
@ -59,7 +65,7 @@ def test(lmdb_path, import_path):
)
print(episodic_dataset)
data_loader = DataLoader(episodic_dataset, batch_size=16, pin_memory=False)
data_loader = DataLoader(episodic_dataset, batch_size=20, pin_memory=False)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
submit = import_module(f"submit.{import_path}")
@ -69,11 +75,8 @@ def test(lmdb_path, import_path):
accs = []
load_st = time.time()
with torch.no_grad():
for item in data_loader:
st = time.time()
print("load", time.time() - load_st)
for item in tqdm(data_loader):
item = convert_tensor(item, device, non_blocking=True)
# item["query"]: B x NK x 3 x W x H
# item["support"]: B x NK x 3 x W x H
@ -81,21 +84,17 @@ def test(lmdb_path, import_path):
batch_size = item["target"].size(0)
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
print("compute", time.time() - st)
load_st = time.time()
accs.append(evaluate(query_batch, item["target"], support_batch))
accs.append(evaluate(query_batch, item["target"], support_batch))
print(torch.tensor(accs).mean().item())
print("time: ", time.time() - st)
if __name__ == '__main__':
setup_seed(100)
defined_path = ["/data/few-shot/lmdb/mini-imagenet/val.lmdb",
"/data/few-shot/lmdb/CUB_200_2011/data.lmdb",
"/data/few-shot/lmdb/STANFORD-CARS/train.lmdb",
# "/data/few-shot/lmdb/Plantae/data.lmdb",
# "/data/few-shot/lmdb/Places365/val.lmdb"
defined_path = [
"/data/few-shot/lmdb/dogs/data.lmdb",
"/data/few-shot/lmdb/flowers/data.lmdb",
"/data/few-shot/lmdb/256-object/data.lmdb",
"/data/few-shot/lmdb/dtd/data.lmdb",
]
parser = argparse.ArgumentParser(description="test")
parser.add_argument('-i', "--import_path", required=True)