Compare commits
2 Commits
598bd9e0f1
...
3a72dcb5f0
| Author | SHA1 | Date | |
|---|---|---|---|
| 3a72dcb5f0 | |||
| 7d720c181b |
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
*.pth
|
||||
.idea/
|
||||
submit/
|
||||
@ -3,6 +3,7 @@ import torch
|
||||
import lmdb
|
||||
import os
|
||||
import pickle
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.folder import default_loader
|
||||
@ -60,9 +61,15 @@ class LMDBDataset(Dataset):
|
||||
|
||||
def __getitem__(self, i):
|
||||
with self.db.begin(write=False) as txn:
|
||||
sample = torch.load(BytesIO(txn.get("{}".format(i).encode())))
|
||||
sample = Image.open(BytesIO(txn.get("{}".format(i).encode())))
|
||||
if sample.mode != "RGB":
|
||||
sample = sample.convert("RGB")
|
||||
if self.transform is not None:
|
||||
sample = self.transform(sample)
|
||||
try:
|
||||
sample = self.transform(sample)
|
||||
except RuntimeError as re:
|
||||
print(sample.format, sample.size, sample.mode)
|
||||
raise re
|
||||
return sample
|
||||
|
||||
|
||||
|
||||
@ -3,34 +3,29 @@ import pickle
|
||||
from io import BytesIO
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
import lmdb
|
||||
from data.dataset import CARS, ImprovedImageFolder
|
||||
import torchvision
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def content_loader(path):
|
||||
with open(path, "rb") as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def dataset_to_lmdb(dataset, lmdb_path):
|
||||
env = lmdb.open(lmdb_path, map_size=1099511627776, subdir=os.path.isdir(lmdb_path))
|
||||
env = lmdb.open(lmdb_path, map_size=1099511627776*2, subdir=os.path.isdir(lmdb_path))
|
||||
with env.begin(write=True) as txn:
|
||||
for i in tqdm(range(len(dataset)), ncols=50):
|
||||
buffer = BytesIO()
|
||||
torch.save(dataset[i], buffer)
|
||||
txn.put("{}".format(i).encode(), buffer.getvalue())
|
||||
txn.put("{}".format(i).encode(), bytearray(dataset[i]))
|
||||
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
||||
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
||||
|
||||
|
||||
def transform(save_path, dataset_path):
|
||||
print(save_path, dataset_path)
|
||||
dt = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize((256, 256)),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", transform=dt)
|
||||
origin_dataset = ImprovedImageFolder(dataset_path, transform=dt)
|
||||
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", loader=content_loader)
|
||||
origin_dataset = ImprovedImageFolder(dataset_path, loader=content_loader)
|
||||
dataset_to_lmdb(origin_dataset, save_path)
|
||||
|
||||
|
||||
|
||||
33
test.py
33
test.py
@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
import torchvision
|
||||
from data import dataset
|
||||
|
||||
import argparse
|
||||
@ -48,7 +48,13 @@ def evaluate(query, target, support):
|
||||
|
||||
|
||||
def test(lmdb_path, import_path):
|
||||
origin_dataset = dataset.LMDBDataset(lmdb_path)
|
||||
dt = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize((256, 256)),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=dt)
|
||||
N = 5
|
||||
K = 5
|
||||
episodic_dataset = dataset.EpisodicDataset(
|
||||
@ -59,7 +65,7 @@ def test(lmdb_path, import_path):
|
||||
)
|
||||
print(episodic_dataset)
|
||||
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=16, pin_memory=False)
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=20, pin_memory=False)
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
submit = import_module(f"submit.{import_path}")
|
||||
@ -69,11 +75,8 @@ def test(lmdb_path, import_path):
|
||||
|
||||
accs = []
|
||||
|
||||
load_st = time.time()
|
||||
with torch.no_grad():
|
||||
for item in data_loader:
|
||||
st = time.time()
|
||||
print("load", time.time() - load_st)
|
||||
for item in tqdm(data_loader):
|
||||
item = convert_tensor(item, device, non_blocking=True)
|
||||
# item["query"]: B x NK x 3 x W x H
|
||||
# item["support"]: B x NK x 3 x W x H
|
||||
@ -81,21 +84,17 @@ def test(lmdb_path, import_path):
|
||||
batch_size = item["target"].size(0)
|
||||
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
|
||||
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
||||
print("compute", time.time() - st)
|
||||
load_st = time.time()
|
||||
|
||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||
print(torch.tensor(accs).mean().item())
|
||||
print("time: ", time.time() - st)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
setup_seed(100)
|
||||
defined_path = ["/data/few-shot/lmdb/mini-imagenet/val.lmdb",
|
||||
"/data/few-shot/lmdb/CUB_200_2011/data.lmdb",
|
||||
"/data/few-shot/lmdb/STANFORD-CARS/train.lmdb",
|
||||
# "/data/few-shot/lmdb/Plantae/data.lmdb",
|
||||
# "/data/few-shot/lmdb/Places365/val.lmdb"
|
||||
defined_path = [
|
||||
"/data/few-shot/lmdb/dogs/data.lmdb",
|
||||
"/data/few-shot/lmdb/flowers/data.lmdb",
|
||||
"/data/few-shot/lmdb/256-object/data.lmdb",
|
||||
"/data/few-shot/lmdb/dtd/data.lmdb",
|
||||
]
|
||||
parser = argparse.ArgumentParser(description="test")
|
||||
parser.add_argument('-i', "--import_path", required=True)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user