few-shot/test.py
2020-07-23 22:32:28 +08:00

112 lines
3.3 KiB
Python
Executable File

import torch
from torch.utils.data import DataLoader
import torchvision
from data import dataset
import argparse
from ignite.utils import convert_tensor
import time
from importlib import import_module
from tqdm import tqdm
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def euclidean_dist(x, y):
"""
Compute euclidean distance between two tensors
"""
# x: B x N x D
# y: B x M x D
n = x.size(-2)
m = y.size(-2)
d = x.size(-1)
if d != y.size(-1):
raise Exception
x = x.unsqueeze(2).expand(x.size(0), n, m, d) # B x N x M x D
y = y.unsqueeze(1).expand(x.size(0), n, m, d)
return torch.pow(x - y, 2).sum(-1)
def evaluate(query, target, support):
"""
:param query: B x NK x D vector
:param target: B x NK vector
:param support: B x N x K x D vector
:return:
"""
prototypes = support.mean(-2) # B x N x D
distance = euclidean_dist(query, prototypes) # B x NK x N
indices = distance.argmin(-1) # B x NK
return torch.eq(target, indices).float().mean()
def test(lmdb_path, import_path):
dt = torchvision.transforms.Compose([
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=None)
N = 5
K = 5
episodic_dataset = dataset.EpisodicDataset(
origin_dataset, # 抽取数据集
N, # N
K, # K
100 # 任务数目
)
print(episodic_dataset)
data_loader = DataLoader(episodic_dataset, batch_size=8, pin_memory=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
submit = import_module(f"submit.{import_path}")
extractor = submit.make_model()
extractor.to(device)
accs = []
with torch.no_grad():
for item in tqdm(data_loader):
item = convert_tensor(item, device, non_blocking=True)
# item["query"]: B x ANK x 3 x W x H
# item["support"]: B x ANK x 3 x W x H
# item["target"]: B x NK
batch_size = item["target"].size(0)
image_size = item["query"].shape[-3:]
A = int(item["query"].size(1) / (N * K))
query_batch = extractor(item["query"].view([-1, *image_size])).view(batch_size, N * K, A, -1)
support_batch = extractor(item["support"].view([-1, *image_size])).view(batch_size, N, K, A, -1)
query_batch = torch.mean(query_batch, -2)
support_batch = torch.mean(support_batch, -2)
accs.append(evaluate(query_batch, item["target"], support_batch))
print(torch.tensor(accs).mean().item())
if __name__ == '__main__':
setup_seed(100)
defined_path = [
"/data/few-shot/lmdb256/dogs.lmdb",
"/data/few-shot/lmdb256/flowers.lmdb",
"/data/few-shot/lmdb256/256-object.lmdb",
"/data/few-shot/lmdb256/dtd.lmdb",
"/data/few-shot/lmdb256/mini-imagenet-test.lmdb"
]
parser = argparse.ArgumentParser(description="test")
parser.add_argument('-i', "--import_path", required=True)
args = parser.parse_args()
for path in defined_path:
print(path)
test(path, args.import_path)