add patch d
This commit is contained in:
parent
611901cbdf
commit
0927fa3de5
@ -1,5 +1,6 @@
|
||||
import torch.nn as nn
|
||||
|
||||
from model import MODEL
|
||||
from model.base.module import Conv2dBlock, ResidualBlock
|
||||
|
||||
|
||||
@ -43,7 +44,7 @@ class Decoder(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, num_up_sampling, num_residual_blocks,
|
||||
activation_type="ReLU", padding_mode='reflect',
|
||||
up_conv_kernel_size=5, up_conv_norm_type="LN",
|
||||
res_norm_type="AdaIN", pre_activation=False):
|
||||
res_norm_type="AdaIN", pre_activation=False, use_transpose_conv=False):
|
||||
super().__init__()
|
||||
self.residual_blocks = nn.ModuleList([
|
||||
ResidualBlock(
|
||||
@ -57,11 +58,21 @@ class Decoder(nn.Module):
|
||||
|
||||
sequence = list()
|
||||
channels = in_channels
|
||||
padding = (up_conv_kernel_size - 1) // 2
|
||||
for i in range(num_up_sampling):
|
||||
if use_transpose_conv:
|
||||
sequence.append(Conv2dBlock(
|
||||
channels, channels // 2, kernel_size=up_conv_kernel_size, stride=1,
|
||||
padding=padding, output_padding=padding,
|
||||
padding_mode=padding_mode,
|
||||
activation_type=activation_type, norm_type=up_conv_norm_type,
|
||||
use_transpose_conv=True
|
||||
))
|
||||
else:
|
||||
sequence.append(nn.Sequential(
|
||||
nn.Upsample(scale_factor=2),
|
||||
Conv2dBlock(channels, channels // 2, kernel_size=up_conv_kernel_size, stride=1,
|
||||
padding=int(up_conv_kernel_size / 2), padding_mode=padding_mode,
|
||||
padding=padding, padding_mode=padding_mode,
|
||||
activation_type=activation_type, norm_type=up_conv_norm_type),
|
||||
))
|
||||
channels = channels // 2
|
||||
@ -74,3 +85,61 @@ class Decoder(nn.Module):
|
||||
for i, blk in enumerate(self.residual_blocks):
|
||||
x = blk(x)
|
||||
return self.up_sequence(x)
|
||||
|
||||
|
||||
@MODEL.register_module("CycleGAN-Generator")
|
||||
class Generator(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, base_channels=64, num_blocks=9, activation_type="ReLU",
|
||||
padding_mode='reflect', norm_type="IN", pre_activation=True, use_transpose_conv=True):
|
||||
super().__init__()
|
||||
self.encoder = Encoder(in_channels, base_channels, num_conv=2, num_res=num_blocks,
|
||||
padding_mode=padding_mode, activation_type=activation_type,
|
||||
down_conv_norm_type=norm_type, res_norm_type=norm_type, pre_activation=pre_activation)
|
||||
self.decoder = Decoder(self.encoder.out_channels, out_channels, num_up_sampling=2, num_residual_blocks=0,
|
||||
padding_mode=padding_mode, activation_type=activation_type,
|
||||
up_conv_kernel_size=3, up_conv_norm_type=norm_type,
|
||||
pre_activation=pre_activation, use_transpose_conv=use_transpose_conv)
|
||||
|
||||
def forward(self, x):
|
||||
return self.decoder(self.encoder(x))
|
||||
|
||||
|
||||
@MODEL.register_module("PatchDiscriminator")
|
||||
class PatchDiscriminator(nn.Module):
|
||||
def __int__(self, in_channels, base_channels=64, num_conv=4, need_intermediate_feature=False,
|
||||
norm_type="IN", padding_mode='reflect', activation_type="LeakyReLU"):
|
||||
super().__init__()
|
||||
self.need_intermediate_feature = need_intermediate_feature
|
||||
kernel_size = 4
|
||||
padding = (kernel_size - 1) // 2
|
||||
sequence = [Conv2dBlock(
|
||||
in_channels, base_channels, kernel_size=kernel_size, stride=2, padding=padding, padding_mode=padding_mode,
|
||||
activation_type=activation_type, norm_type=norm_type
|
||||
)]
|
||||
|
||||
multiple_now = 1
|
||||
for i in range(1, num_conv + 1):
|
||||
multiple_prev = multiple_now
|
||||
multiple_now = min(2 ** i, 2 ** 3)
|
||||
stride = 1 if i == num_conv - 1 else 2
|
||||
sequence.append(Conv2dBlock(
|
||||
multiple_prev * base_channels, multiple_now * base_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding, padding_mode=padding_mode,
|
||||
activation_type=activation_type, norm_type=norm_type
|
||||
))
|
||||
sequence.append(nn.Conv2d(
|
||||
base_channels * multiple_now, 1, kernel_size, stride=1, padding=padding, padding_mode=padding_mode))
|
||||
if self.need_intermediate_feature:
|
||||
self.sequence = nn.ModuleList(sequence)
|
||||
else:
|
||||
self.sequence = nn.Sequential(*sequence)
|
||||
|
||||
def forward(self, x):
|
||||
if self.need_intermediate_feature:
|
||||
intermediate_feature = []
|
||||
for layer in self.sequence:
|
||||
x = layer(x)
|
||||
intermediate_feature.append(x)
|
||||
return tuple(intermediate_feature)
|
||||
else:
|
||||
return self.sequence(x)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user