base model, Norm&Conv&ResNet

This commit is contained in:
Ray Wong 2020-09-26 17:45:51 +08:00
parent acf243cb12
commit 0f2b67e215
3 changed files with 251 additions and 0 deletions

0
model/base/__init__.py Normal file
View File

109
model/base/module.py Normal file
View File

@ -0,0 +1,109 @@
import torch.nn as nn
from model.registry import NORMALIZATION
_DO_NO_THING_FUNC = lambda x: x
def _use_bias_checker(norm_type):
return norm_type not in ["IN", "BN", "AdaIN", "FADE", "SPADE"]
def _normalization(norm, num_features, additional_kwargs=None):
if norm == "NONE":
return _DO_NO_THING_FUNC
if additional_kwargs is None:
additional_kwargs = {}
kwargs = dict(_type=norm, num_features=num_features)
kwargs.update(additional_kwargs)
return NORMALIZATION.build_with(kwargs)
def _activation(activation):
if activation == "NONE":
return _DO_NO_THING_FUNC
elif activation == "ReLU":
return nn.ReLU(inplace=True)
elif activation == "LeakyReLU":
return nn.LeakyReLU(negative_slope=0.2, inplace=True)
elif activation == "Tanh":
return nn.Tanh()
else:
raise NotImplemented(activation)
class Conv2dBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int, bias=None,
activation_type="ReLU", norm_type="NONE", **conv_kwargs):
super().__init__()
self.norm_type = norm_type
self.activation_type = activation_type
# if caller not set bias, set bias automatically.
conv_kwargs["bias"] = _use_bias_checker(norm_type) if bias is None else bias
self.convolution = nn.Conv2d(in_channels, out_channels, **conv_kwargs)
self.normalization = _normalization(norm_type, out_channels)
self.activation = _activation(activation_type)
def forward(self, x):
return self.activation(self.normalization(self.convolution(x)))
class ResidualBlock(nn.Module):
def __init__(self, num_channels, out_channels=None, padding_mode='reflect',
activation_type="ReLU", out_activation_type=None, norm_type="IN"):
super().__init__()
self.norm_type = norm_type
if out_channels is None:
out_channels = num_channels
if out_activation_type is None:
out_activation_type = "NONE"
self.learn_skip_connection = num_channels != out_channels
self.conv1 = Conv2dBlock(num_channels, num_channels, kernel_size=3, padding=1, padding_mode=padding_mode,
norm_type=norm_type, activation_type=activation_type)
self.conv2 = Conv2dBlock(num_channels, out_channels, kernel_size=3, padding=1, padding_mode=padding_mode,
norm_type=norm_type, activation_type=out_activation_type)
if self.learn_skip_connection:
self.res_conv = Conv2dBlock(num_channels, out_channels, kernel_size=3, padding=1, padding_mode=padding_mode,
norm_type=norm_type, activation_type=out_activation_type)
def forward(self, x):
res = x if not self.learn_skip_connection else self.res_conv(x)
return self.conv2(self.conv1(x)) + res
class ReverseConv2dBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int,
activation_type="ReLU", norm_type="NONE", additional_norm_kwargs=None, **conv_kwargs):
super().__init__()
self.normalization = _normalization(norm_type, in_channels, additional_norm_kwargs)
self.activation = _activation(activation_type)
self.convolution = nn.Conv2d(in_channels, out_channels, **conv_kwargs)
def forward(self, x):
return self.convolution(self.activation(self.normalization(x)))
class ReverseResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, padding_mode="reflect",
norm_type="IN", additional_norm_kwargs=None, activation_type="ReLU"):
super().__init__()
self.learn_skip_connection = in_channels != out_channels
self.conv1 = ReverseConv2dBlock(in_channels, in_channels, activation_type, norm_type, additional_norm_kwargs,
kernel_size=3, padding=1, padding_mode=padding_mode)
self.conv2 = ReverseConv2dBlock(in_channels, out_channels, activation_type, norm_type, additional_norm_kwargs,
kernel_size=3, padding=1, padding_mode=padding_mode)
if self.learn_skip_connection:
self.res_conv = ReverseConv2dBlock(
in_channels, out_channels, activation_type, norm_type, additional_norm_kwargs,
kernel_size=3, padding=1, padding_mode=padding_mode)
def forward(self, x):
res = x if not self.learn_skip_connection else self.res_conv(x)
return self.conv2(self.conv1(x)) + res

142
model/base/normalization.py Normal file
View File

@ -0,0 +1,142 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from model import NORMALIZATION
from model.base.module import Conv2dBlock
_VALID_NORM_AND_ABBREVIATION = dict(
IN="InstanceNorm2d",
BN="BatchNorm2d",
)
for abbr, name in _VALID_NORM_AND_ABBREVIATION.items():
NORMALIZATION.register_module(module=getattr(nn, name), name=abbr)
@NORMALIZATION.register_module("ADE")
class AdaptiveDenormalization(nn.Module):
def __init__(self, num_features, base_norm_type="BN"):
super().__init__()
self.num_features = num_features
self.base_norm_type = base_norm_type
self.norm = self.base_norm(num_features)
self.gamma = None
self.beta = None
self.have_set_condition = False
def base_norm(self, num_features):
if self.base_norm_type == "IN":
return nn.InstanceNorm2d(num_features)
elif self.base_norm_type == "BN":
return nn.BatchNorm2d(num_features, affine=False, track_running_stats=True)
def set_condition(self, gamma, beta):
self.gamma, self.beta = gamma, beta
self.have_set_condition = True
def forward(self, x):
assert self.have_set_condition
x = self.norm(x)
x = self.gamma * x + self.beta
self.have_set_condition = False
return x
def __repr__(self):
return f"{self.__class__.__name__}(num_features={self.num_features}, " \
f"base_norm_type={self.base_norm_type})"
@NORMALIZATION.register_module("AdaIN")
class AdaptiveInstanceNorm2d(AdaptiveDenormalization):
def __init__(self, num_features: int):
super().__init__(num_features, "IN")
self.num_features = num_features
def set_style(self, style):
style = style.view(*style.size(), 1, 1)
gamma, beta = style.chunk(2, 1)
super().set_condition(gamma, beta)
@NORMALIZATION.register_module("FADE")
class FeatureAdaptiveDenormalization(AdaptiveDenormalization):
def __init__(self, num_features: int, condition_in_channels, base_norm_type="BN", padding_mode="zeros"):
super().__init__(num_features, base_norm_type)
self.beta_conv = nn.Conv2d(condition_in_channels, self.num_features, kernel_size=3, padding=1,
padding_mode=padding_mode)
self.gamma_conv = nn.Conv2d(condition_in_channels, self.num_features, kernel_size=3, padding=1,
padding_mode=padding_mode)
def set_feature(self, feature):
gamma = self.gamma_conv(feature)
beta = self.beta_conv(feature)
super().set_condition(gamma, beta)
@NORMALIZATION.register_module("SPADE")
class SpatiallyAdaptiveDenormalization(AdaptiveDenormalization):
def __init__(self, num_features: int, condition_in_channels, base_channels=128, base_norm_type="BN",
activation_type="ReLU", padding_mode="zeros"):
super().__init__(num_features, base_norm_type)
self.base_conv_block = Conv2dBlock(condition_in_channels, num_features, activation_type=activation_type,
kernel_size=3, padding=1, padding_mode=padding_mode, norm_type="NONE")
self.beta_conv = nn.Conv2d(base_channels, num_features, kernel_size=3, padding=1, padding_mode=padding_mode)
self.gamma_conv = nn.Conv2d(base_channels, num_features, kernel_size=3, padding=1, padding_mode=padding_mode)
def set_condition_image(self, condition_image):
feature = self.base_conv_block(condition_image)
gamma = self.gamma_conv(feature)
beta = self.beta_conv(feature)
super().set_condition(gamma, beta)
def _instance_layer_normalization(x, gamma, beta, rho, eps=1e-5):
out = rho * F.instance_norm(x, eps=eps) + (1 - rho) * F.layer_norm(x, x.size()[1:], eps=eps)
out = out * gamma + beta
return out
@NORMALIZATION.register_module("ILN")
class ILN(nn.Module):
def __init__(self, num_features, eps=1e-5):
super(ILN, self).__init__()
self.eps = eps
self.rho = nn.Parameter(torch.Tensor(num_features))
self.gamma = nn.Parameter(torch.Tensor(num_features))
self.beta = nn.Parameter(torch.Tensor(num_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.zeros_(self.rho)
nn.init.ones_(self.gamma)
nn.init.zeros_(self.beta)
def forward(self, x):
return _instance_layer_normalization(
x, self.gamma.expand_as(x), self.beta.expand_as(x), self.rho.expand_as(x), self.eps)
@NORMALIZATION.register_module("AdaILN")
class AdaILN(nn.Module):
def __init__(self, num_features, eps=1e-5, default_rho=0.9):
super(AdaILN, self).__init__()
self.eps = eps
self.rho = nn.Parameter(torch.Tensor(num_features))
self.rho.data.fill_(default_rho)
self.gamma = None
self.beta = None
self.have_set_condition = False
def set_condition(self, gamma, beta):
self.gamma, self.beta = gamma, beta
self.have_set_condition = True
def forward(self, x):
assert self.have_set_condition
out = _instance_layer_normalization(
x, self.gamma.expand_as(x), self.beta.expand_as(x), self.rho.expand_as(x), self.eps)
self.have_set_condition = False
return out