add MUNIT
This commit is contained in:
parent
f70658eaed
commit
2ff4a91057
@ -1,11 +1,11 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="PublishConfigData" autoUpload="Always" serverName="15d" remoteFilesAllowedToDisappearOnAutoupload="false">
|
||||
<component name="PublishConfigData" autoUpload="Always" serverName="14d" remoteFilesAllowedToDisappearOnAutoupload="false">
|
||||
<serverData>
|
||||
<paths name="14d">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
<mapping deploy="raycv" local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
|
||||
132
configs/synthesizers/MUNIT.yml
Normal file
132
configs/synthesizers/MUNIT.yml
Normal file
@ -0,0 +1,132 @@
|
||||
name: MUNIT-edges2shoes
|
||||
engine: MUNIT
|
||||
result_dir: ./result
|
||||
max_pairs: 1000000
|
||||
|
||||
handler:
|
||||
clear_cuda_cache: True
|
||||
set_epoch_for_dist_sampler: True
|
||||
checkpoint:
|
||||
epoch_interval: 1 # checkpoint once per `epoch_interval` epoch
|
||||
n_saved: 2
|
||||
tensorboard:
|
||||
scalar: 100 # log scalar `scalar` times per epoch
|
||||
image: 2 # log image `image` times per epoch
|
||||
|
||||
|
||||
misc:
|
||||
random_seed: 324
|
||||
|
||||
model:
|
||||
generator:
|
||||
_type: MUNIT-Generator
|
||||
in_channels: 3
|
||||
out_channels: 3
|
||||
base_channels: 64
|
||||
num_sampling: 2
|
||||
num_style_dim: 8
|
||||
num_style_conv: 4
|
||||
num_content_res_blocks: 4
|
||||
num_decoder_res_blocks: 4
|
||||
num_fusion_dim: 256
|
||||
num_fusion_blocks: 3
|
||||
|
||||
discriminator:
|
||||
_type: MultiScaleDiscriminator
|
||||
num_scale: 2
|
||||
discriminator_cfg:
|
||||
_type: PatchDiscriminator
|
||||
in_channels: 3
|
||||
base_channels: 64
|
||||
use_spectral: True
|
||||
need_intermediate_feature: True
|
||||
|
||||
loss:
|
||||
gan:
|
||||
loss_type: lsgan
|
||||
real_label_val: 1.0
|
||||
fake_label_val: 0.0
|
||||
weight: 1.0
|
||||
perceptual:
|
||||
layer_weights:
|
||||
"1": 0.03125
|
||||
"6": 0.0625
|
||||
"11": 0.125
|
||||
"20": 0.25
|
||||
"29": 1
|
||||
criterion: 'L1'
|
||||
style_loss: False
|
||||
perceptual_loss: True
|
||||
weight: 0
|
||||
recon:
|
||||
level: 1
|
||||
style:
|
||||
weight: 1
|
||||
content:
|
||||
weight: 1
|
||||
image:
|
||||
weight: 10
|
||||
cycle:
|
||||
weight: 0
|
||||
|
||||
optimizers:
|
||||
generator:
|
||||
_type: Adam
|
||||
lr: 0.0001
|
||||
betas: [ 0.5, 0.999 ]
|
||||
weight_decay: 0.0001
|
||||
discriminator:
|
||||
_type: Adam
|
||||
lr: 4e-4
|
||||
betas: [ 0.5, 0.999 ]
|
||||
weight_decay: 0.0001
|
||||
|
||||
data:
|
||||
train:
|
||||
scheduler:
|
||||
start_proportion: 0.5
|
||||
target_lr: 0
|
||||
buffer_size: 50
|
||||
dataloader:
|
||||
batch_size: 1
|
||||
shuffle: True
|
||||
num_workers: 1
|
||||
pin_memory: True
|
||||
drop_last: True
|
||||
dataset:
|
||||
_type: GenerationUnpairedDataset
|
||||
root_a: "/data/i2i/edges2shoes/trainA"
|
||||
root_b: "/data/i2i/edges2shoes/trainB"
|
||||
random_pair: True
|
||||
pipeline:
|
||||
- Load
|
||||
- Resize:
|
||||
size: [ 286, 286 ]
|
||||
- RandomCrop:
|
||||
size: [ 256, 256 ]
|
||||
- RandomHorizontalFlip
|
||||
- ToTensor
|
||||
- Normalize:
|
||||
mean: [ 0.5, 0.5, 0.5 ]
|
||||
std: [ 0.5, 0.5, 0.5 ]
|
||||
test:
|
||||
which: dataset
|
||||
dataloader:
|
||||
batch_size: 8
|
||||
shuffle: False
|
||||
num_workers: 1
|
||||
pin_memory: False
|
||||
drop_last: False
|
||||
dataset:
|
||||
_type: GenerationUnpairedDataset
|
||||
root_a: "/data/i2i/edges2shoes/testA"
|
||||
root_b: "/data/i2i/edges2shoes/testB"
|
||||
random_pair: False
|
||||
pipeline:
|
||||
- Load
|
||||
- Resize:
|
||||
size: [ 256, 256 ]
|
||||
- ToTensor
|
||||
- Normalize:
|
||||
mean: [ 0.5, 0.5, 0.5 ]
|
||||
std: [ 0.5, 0.5, 0.5 ]
|
||||
154
engine/MUNIT.py
Normal file
154
engine/MUNIT.py
Normal file
@ -0,0 +1,154 @@
|
||||
import ignite.distributed as idist
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from engine.base.i2i import EngineKernel, run_kernel, TestEngineKernel
|
||||
from engine.util.build import build_model
|
||||
from loss.I2I.perceptual_loss import PerceptualLoss
|
||||
from loss.gan import GANLoss
|
||||
|
||||
|
||||
def mse_loss(x, target_flag):
|
||||
return F.mse_loss(x, torch.ones_like(x) if target_flag else torch.zeros_like(x))
|
||||
|
||||
|
||||
def bce_loss(x, target_flag):
|
||||
return F.binary_cross_entropy_with_logits(x, torch.ones_like(x) if target_flag else torch.zeros_like(x))
|
||||
|
||||
|
||||
class MUNITEngineKernel(EngineKernel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
perceptual_loss_cfg = OmegaConf.to_container(config.loss.perceptual)
|
||||
perceptual_loss_cfg.pop("weight")
|
||||
self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device())
|
||||
|
||||
gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
|
||||
gan_loss_cfg.pop("weight")
|
||||
self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
|
||||
self.recon_loss = nn.L1Loss() if config.loss.recon.level == 1 else nn.MSELoss()
|
||||
self.train_generator_first = False
|
||||
|
||||
def build_models(self) -> (dict, dict):
|
||||
generators = dict(
|
||||
a=build_model(self.config.model.generator),
|
||||
b=build_model(self.config.model.generator)
|
||||
)
|
||||
discriminators = dict(
|
||||
a=build_model(self.config.model.discriminator),
|
||||
b=build_model(self.config.model.discriminator)
|
||||
)
|
||||
self.logger.debug(discriminators["a"])
|
||||
self.logger.debug(generators["a"])
|
||||
|
||||
return generators, discriminators
|
||||
|
||||
def setup_after_g(self):
|
||||
for discriminator in self.discriminators.values():
|
||||
discriminator.requires_grad_(True)
|
||||
|
||||
def setup_before_g(self):
|
||||
for discriminator in self.discriminators.values():
|
||||
discriminator.requires_grad_(False)
|
||||
|
||||
def forward(self, batch, inference=False) -> dict:
|
||||
styles = dict()
|
||||
contents = dict()
|
||||
images = dict()
|
||||
|
||||
for phase in "ab":
|
||||
contents[phase], styles[phase] = self.generators[phase].encode(batch[phase])
|
||||
images["{0}2{0}".format(phase)] = self.generators[phase].decode(contents[phase], styles[phase])
|
||||
styles[f"random_{phase}"] = torch.randn_like(styles[phase]).to(idist.device())
|
||||
|
||||
for phase in ("a2b", "b2a"):
|
||||
# images["a2b"] = Gb.decode(content_a, random_style_b)
|
||||
images[phase] = self.generators[phase[-1]].decode(contents[phase[0]], styles[f"random_{phase[-1]}"])
|
||||
# contents["a2b"], styles["a2b"] = Gb.encode(images["a2b"])
|
||||
contents[phase], styles[phase] = self.generators[phase[-1]].encode(images[phase])
|
||||
if self.config.loss.recon.cycle.weight > 0:
|
||||
images[f"{phase}2{phase[0]}"] = self.generators[phase[0]].decode(contents[phase], styles[phase[0]])
|
||||
return dict(styles=styles, contents=contents, images=images)
|
||||
|
||||
def criterion_generators(self, batch, generated) -> dict:
|
||||
loss = dict()
|
||||
for phase in "ab":
|
||||
loss[f"recon_image_{phase}"] = self.config.loss.recon.image.weight * self.recon_loss(
|
||||
batch[phase], generated["images"]["{0}2{0}".format(phase)])
|
||||
loss[f"recon_content_{phase}"] = self.config.loss.recon.content.weight * self.recon_loss(
|
||||
generated["contents"][phase], generated["contents"]["a2b" if phase == "a" else "b2a"])
|
||||
loss[f"recon_style_{phase}"] = self.config.loss.recon.style.weight * self.recon_loss(
|
||||
generated["styles"][f"random_{phase}"], generated["styles"]["b2a" if phase == "a" else "a2b"])
|
||||
pred_fake = self.discriminators[phase](generated["images"]["b2a" if phase == "a" else "a2b"])
|
||||
loss[f"gan_{phase}"] = 0
|
||||
for sub_pred_fake in pred_fake:
|
||||
# last output is actual prediction
|
||||
loss[f"gan_{phase}"] += self.gan_loss(sub_pred_fake[-1], True)
|
||||
if self.config.loss.recon.cycle.weight > 0:
|
||||
loss[f"recon_cycle_{phase}"] = self.config.loss.recon.cycle.weight * self.recon_loss(
|
||||
batch[phase], generated["images"]["a2b2a" if phase == "a" else "b2a2b"])
|
||||
if self.config.loss.perceptual.weight > 0:
|
||||
loss[f"perceptual_{phase}"] = self.config.loss.perceptual.weight * self.perceptual_loss(
|
||||
batch[phase], generated["images"]["a2b" if phase == "a" else "b2a"])
|
||||
return loss
|
||||
|
||||
def criterion_discriminators(self, batch, generated) -> dict:
|
||||
loss = dict()
|
||||
for phase in ("a2b", "b2a"):
|
||||
pred_real = self.discriminators[phase[-1]](batch[phase[-1]])
|
||||
pred_fake = self.discriminators[phase[-1]](generated["images"][phase].detach())
|
||||
loss[f"gan_{phase[-1]}"] = 0
|
||||
for i in range(len(pred_fake)):
|
||||
loss[f"gan_{phase[-1]}"] += (self.gan_loss(pred_fake[i][-1], False, is_discriminator=True)
|
||||
+ self.gan_loss(pred_real[i][-1], True, is_discriminator=True)) / 2
|
||||
return loss
|
||||
|
||||
def intermediate_images(self, batch, generated) -> dict:
|
||||
"""
|
||||
returned dict must be like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
|
||||
:param batch:
|
||||
:param generated: dict of images
|
||||
:return: dict like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
|
||||
"""
|
||||
generated = {img: generated["images"][img].detach() for img in generated["images"]}
|
||||
images = dict()
|
||||
for phase in "ab":
|
||||
images[phase] = [batch[phase].detach(), generated["{0}2{0}".format(phase)],
|
||||
generated["a2b" if phase == "a" else "b2a"]]
|
||||
if self.config.loss.recon.cycle.weight > 0:
|
||||
images[phase].append(generated["a2b2a" if phase == "a" else "b2a2b"])
|
||||
return images
|
||||
|
||||
|
||||
class MUNITTestEngineKernel(TestEngineKernel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
def build_generators(self) -> dict:
|
||||
generators = dict(
|
||||
a=build_model(self.config.model.generator),
|
||||
b=build_model(self.config.model.generator)
|
||||
)
|
||||
return generators
|
||||
|
||||
def to_load(self):
|
||||
return {f"generator_{k}": self.generators[k] for k in self.generators}
|
||||
|
||||
def inference(self, batch):
|
||||
with torch.no_grad():
|
||||
fake, _, _ = self.generators["a2b"](batch[0])
|
||||
return fake.detach()
|
||||
|
||||
|
||||
def run(task, config, _):
|
||||
if task == "train":
|
||||
kernel = MUNITEngineKernel(config)
|
||||
run_kernel(task, config, kernel)
|
||||
elif task == "test":
|
||||
kernel = MUNITTestEngineKernel(config)
|
||||
run_kernel(task, config, kernel)
|
||||
else:
|
||||
raise NotImplemented
|
||||
@ -6,7 +6,6 @@ channels:
|
||||
dependencies:
|
||||
- python=3.8
|
||||
- numpy
|
||||
- ipython
|
||||
- tqdm
|
||||
- pyyaml
|
||||
- pytorch=1.6.*
|
||||
|
||||
154
model/GAN/MUNIT.py
Normal file
154
model/GAN/MUNIT.py
Normal file
@ -0,0 +1,154 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from model import MODEL
|
||||
from model.GAN.base import Conv2dBlock, ResBlock
|
||||
from model.normalization import select_norm_layer
|
||||
|
||||
|
||||
class StyleEncoder(nn.Module):
|
||||
def __init__(self, in_channels, out_dim, num_conv, base_channels=64, use_spectral_norm=False,
|
||||
padding_mode='reflect', activation_type="ReLU", norm_type="NONE"):
|
||||
super(StyleEncoder, self).__init__()
|
||||
|
||||
sequence = [Conv2dBlock(
|
||||
in_channels, base_channels, kernel_size=7, stride=1, padding=3, padding_mode=padding_mode,
|
||||
use_spectral_norm=use_spectral_norm, activation_type=activation_type, norm_type=norm_type
|
||||
)]
|
||||
|
||||
multiple_now = 1
|
||||
for i in range(1, num_conv + 1):
|
||||
multiple_prev = multiple_now
|
||||
multiple_now = min(2 ** i, 2 ** 2)
|
||||
sequence.append(Conv2dBlock(
|
||||
multiple_prev * base_channels, multiple_now * base_channels,
|
||||
kernel_size=4, stride=2, padding=1, padding_mode=padding_mode,
|
||||
use_spectral_norm=use_spectral_norm, activation_type=activation_type, norm_type=norm_type
|
||||
))
|
||||
sequence.append(nn.AdaptiveAvgPool2d(1))
|
||||
# conv1x1 works as fc when tensor's size is (batch_size, channels, 1, 1), keep same with origin code
|
||||
sequence.append(nn.Conv2d(multiple_now * base_channels, out_dim, kernel_size=1, stride=1, padding=0))
|
||||
self.model = nn.Sequential(*sequence)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x).view(x.size(0), -1)
|
||||
|
||||
|
||||
class ContentEncoder(nn.Module):
|
||||
def __init__(self, in_channels, num_down_sampling, num_res_blocks, base_channels=64, use_spectral_norm=False,
|
||||
padding_mode='reflect', activation_type="ReLU", norm_type="IN"):
|
||||
super().__init__()
|
||||
sequence = [Conv2dBlock(
|
||||
in_channels, base_channels, kernel_size=7, stride=1, padding=3, padding_mode=padding_mode,
|
||||
use_spectral_norm=use_spectral_norm, activation_type=activation_type, norm_type=norm_type
|
||||
)]
|
||||
|
||||
for i in range(num_down_sampling):
|
||||
sequence.append(Conv2dBlock(
|
||||
base_channels * (2 ** i), base_channels * (2 ** (i + 1)),
|
||||
kernel_size=4, stride=2, padding=1, padding_mode=padding_mode,
|
||||
use_spectral_norm=use_spectral_norm, activation_type=activation_type, norm_type=norm_type
|
||||
))
|
||||
|
||||
for _ in range(num_res_blocks):
|
||||
sequence.append(
|
||||
ResBlock(base_channels * (2 ** num_down_sampling), use_spectral_norm, padding_mode, norm_type,
|
||||
activation_type)
|
||||
)
|
||||
|
||||
self.sequence = nn.Sequential(*sequence)
|
||||
|
||||
def forward(self, x):
|
||||
return self.sequence(x)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, num_up_sampling, num_res_blocks,
|
||||
use_spectral_norm=False, res_norm_type="AdaIN", norm_type="LN", activation_type="ReLU",
|
||||
padding_mode='reflect'):
|
||||
super(Decoder, self).__init__()
|
||||
self.res_norm_type = res_norm_type
|
||||
self.res_blocks = nn.ModuleList([
|
||||
ResBlock(in_channels, use_spectral_norm, padding_mode, res_norm_type, activation_type=activation_type)
|
||||
for _ in range(num_res_blocks)
|
||||
])
|
||||
sequence = list()
|
||||
channels = in_channels
|
||||
for i in range(num_up_sampling):
|
||||
sequence.append(nn.Sequential(
|
||||
nn.Upsample(scale_factor=2),
|
||||
Conv2dBlock(channels, channels // 2,
|
||||
kernel_size=5, stride=1, padding=2, padding_mode=padding_mode,
|
||||
use_spectral_norm=use_spectral_norm, activation_type=activation_type, norm_type=norm_type
|
||||
),
|
||||
))
|
||||
channels = channels // 2
|
||||
sequence.append(
|
||||
Conv2dBlock(channels, out_channels, kernel_size=7, stride=1, padding=3, padding_mode="reflect",
|
||||
use_spectral_norm=use_spectral_norm, activation_type="Tanh", norm_type="NONE"))
|
||||
self.sequence = nn.Sequential(*sequence)
|
||||
|
||||
def forward(self, x):
|
||||
for blk in self.res_blocks:
|
||||
x = blk(x)
|
||||
return self.sequence(x)
|
||||
|
||||
|
||||
class Fusion(nn.Module):
|
||||
def __init__(self, in_features, out_features, base_features, n_blocks, norm_type="NONE"):
|
||||
super().__init__()
|
||||
norm_layer = select_norm_layer(norm_type)
|
||||
self.start_fc = nn.Sequential(
|
||||
nn.Linear(in_features, base_features),
|
||||
norm_layer(base_features),
|
||||
nn.ReLU(True),
|
||||
)
|
||||
self.fcs = nn.Sequential(*[
|
||||
nn.Sequential(
|
||||
nn.Linear(base_features, base_features),
|
||||
norm_layer(base_features),
|
||||
nn.ReLU(True),
|
||||
) for _ in range(n_blocks - 2)
|
||||
])
|
||||
self.end_fc = nn.Sequential(
|
||||
nn.Linear(base_features, out_features),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.start_fc(x)
|
||||
x = self.fcs(x)
|
||||
return self.end_fc(x)
|
||||
|
||||
|
||||
@MODEL.register_module("MUNIT-Generator")
|
||||
class Generator(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, base_channels, num_sampling, num_style_dim, num_style_conv,
|
||||
num_content_res_blocks, num_decoder_res_blocks, num_fusion_dim, num_fusion_blocks,
|
||||
use_spectral_norm=False, activation_type="ReLU", padding_mode='reflect'):
|
||||
super().__init__()
|
||||
self.num_decoder_res_blocks = num_decoder_res_blocks
|
||||
self.content_encoder = ContentEncoder(in_channels, num_sampling, num_content_res_blocks, base_channels,
|
||||
use_spectral_norm, padding_mode, activation_type, norm_type="IN")
|
||||
self.style_encoder = StyleEncoder(in_channels, num_style_dim, num_style_conv, base_channels, use_spectral_norm,
|
||||
padding_mode, activation_type, norm_type="NONE")
|
||||
content_channels = base_channels * (2 ** 2)
|
||||
self.decoder = Decoder(content_channels, out_channels, num_sampling,
|
||||
num_decoder_res_blocks, use_spectral_norm, "AdaIN", norm_type="LN",
|
||||
activation_type=activation_type, padding_mode=padding_mode)
|
||||
self.fusion = Fusion(num_style_dim, num_decoder_res_blocks * 2 * content_channels * 2,
|
||||
base_features=num_fusion_dim, n_blocks=num_fusion_blocks, norm_type="NONE")
|
||||
|
||||
def encode(self, x):
|
||||
return self.content_encoder(x), self.style_encoder(x)
|
||||
|
||||
def decode(self, content, style):
|
||||
as_param_style = torch.chunk(self.fusion(style), self.num_decoder_res_blocks * 2, dim=1)
|
||||
# set style for decoder
|
||||
for i, blk in enumerate(self.decoder.res_blocks):
|
||||
blk.conv1.normalization.set_style(as_param_style[2 * i])
|
||||
blk.conv2.normalization.set_style(as_param_style[2 * i + 1])
|
||||
return self.decoder(content)
|
||||
|
||||
def forward(self, x):
|
||||
content, style = self.encode(x)
|
||||
return self.decode(content, style)
|
||||
@ -1,10 +1,11 @@
|
||||
import math
|
||||
from functools import partial
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from model.normalization import select_norm_layer
|
||||
from model import MODEL
|
||||
from model.normalization import select_norm_layer
|
||||
|
||||
|
||||
class GANImageBuffer(object):
|
||||
@ -137,3 +138,66 @@ class ResidualBlock(nn.Module):
|
||||
x = self.relu1(self.norm1(self.conv1(x)))
|
||||
x = self.norm2(self.conv2(x))
|
||||
return x + res
|
||||
|
||||
|
||||
_DO_NO_THING_FUNC = lambda x: x
|
||||
|
||||
|
||||
def select_activation(t):
|
||||
if t == "ReLU":
|
||||
return partial(nn.ReLU, inplace=True)
|
||||
elif t == "LeakyReLU":
|
||||
return partial(nn.LeakyReLU, negative_slope=0.2, inplace=True)
|
||||
elif t == "Tanh":
|
||||
return partial(nn.Tanh)
|
||||
elif t == "NONE":
|
||||
return _DO_NO_THING_FUNC
|
||||
else:
|
||||
raise NotImplemented
|
||||
|
||||
|
||||
def _use_bias_checker(norm_type):
|
||||
return norm_type not in ["IN", "BN", "AdaIN"]
|
||||
|
||||
|
||||
class Conv2dBlock(nn.Module):
|
||||
def __init__(self, in_channels: int, out_channels: int, use_spectral_norm=False, activation_type="ReLU",
|
||||
bias=None, norm_type="NONE", **conv_kwargs):
|
||||
super().__init__()
|
||||
self.norm_type = norm_type
|
||||
self.activation_type = activation_type
|
||||
conv_kwargs["bias"] = _use_bias_checker(norm_type) if bias is None else bias
|
||||
conv = nn.Conv2d(in_channels, out_channels, **conv_kwargs)
|
||||
self.convolution = nn.utils.spectral_norm(conv) if use_spectral_norm else conv
|
||||
if norm_type != "NONE":
|
||||
self.normalization = select_norm_layer(norm_type)(out_channels)
|
||||
if activation_type != "NONE":
|
||||
self.activation = select_activation(activation_type)()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.convolution(x)
|
||||
if self.norm_type != "NONE":
|
||||
x = self.normalization(x)
|
||||
if self.activation_type != "NONE":
|
||||
x = self.activation(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, num_channels, use_spectral_norm=False, padding_mode='reflect',
|
||||
norm_type="IN", activation_type="relu", use_bias=None):
|
||||
super().__init__()
|
||||
self.norm_type = norm_type
|
||||
if use_bias is None:
|
||||
# bias will be canceled after channel wise normalization
|
||||
use_bias = _use_bias_checker(norm_type)
|
||||
|
||||
self.conv1 = Conv2dBlock(num_channels, num_channels, use_spectral_norm,
|
||||
kernel_size=3, padding=1, padding_mode=padding_mode, bias=use_bias,
|
||||
norm_type=norm_type, activation_type=activation_type)
|
||||
self.conv2 = Conv2dBlock(num_channels, num_channels, use_spectral_norm,
|
||||
kernel_size=3, padding=1, padding_mode=padding_mode, bias=use_bias,
|
||||
norm_type=norm_type, activation_type="NONE")
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv2(self.conv1(x)) + x
|
||||
|
||||
@ -5,3 +5,4 @@ import model.GAN.UGATIT
|
||||
import model.GAN.wrapper
|
||||
import model.GAN.base
|
||||
import model.GAN.TSIT
|
||||
import model.GAN.MUNIT
|
||||
Loading…
Reference in New Issue
Block a user