This commit is contained in:
budui 2020-10-22 22:42:01 +08:00
parent 0019d4034c
commit 376f5caeb7
11 changed files with 140 additions and 29 deletions

View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PublishConfigData" autoUpload="Always" serverName="21d" remoteFilesAllowedToDisappearOnAutoupload="false">
<component name="PublishConfigData" autoUpload="Always" serverName="14d" remoteFilesAllowedToDisappearOnAutoupload="false">
<serverData>
<paths name="14d">
<serverdata>

View File

@ -1,4 +1,4 @@
name: selfie2anime-cycleGAN
name: huawei-cycylegan-7
engine: CycleGAN
result_dir: ./result
max_pairs: 1000000
@ -27,18 +27,33 @@ model:
out_channels: 3
base_channels: 64
num_blocks: 9
use_transpose_conv: False
pre_activation: True
# discriminator:
# _type: MultiScaleDiscriminator
# _add_spectral_norm: True
# num_scale: 2
# down_sample_method: "bilinear"
# discriminator_cfg:
# _type: PatchDiscriminator
# in_channels: 3
# base_channels: 64
# num_conv: 4
# need_intermediate_feature: True
discriminator:
_type: PatchDiscriminator
_add_spectral_norm: True
in_channels: 3
base_channels: 64
num_conv: 4
need_intermediate_feature: False
loss:
gan:
loss_type: lsgan
loss_type: hinge
weight: 1.0
real_label_val: 1.0
real_label_val: 1
fake_label_val: 0.0
cycle:
level: 1
@ -47,17 +62,22 @@ loss:
level: 1
weight: 10.0
mgc:
weight: 5
weight: 1
fm:
weight: 0
edge:
weight: 0
hed_pretrained_model_path: ./network-bsds500.pytorch
optimizers:
generator:
_type: Adam
lr: 0.0001
lr: 1e-4
betas: [ 0.5, 0.999 ]
weight_decay: 0.0001
discriminator:
_type: Adam
lr: 1e-4
lr: 4e-4
betas: [ 0.5, 0.999 ]
weight_decay: 0.0001
@ -75,10 +95,21 @@ data:
drop_last: True
dataset:
_type: GenerationUnpairedDataset
root_a: "/data/i2i/selfie2anime/trainA"
root_b: "/data/i2i/selfie2anime/trainB"
root_a: "/data/face2cartoon/all_face"
root_b: "/data/selfie2anime/trainB/"
random_pair: True
pipeline:
pipeline_a:
- Load
- RandomCrop:
size: [ 178, 178 ]
- Resize:
size: [ 256, 256 ]
- RandomHorizontalFlip
- ToTensor
- Normalize:
mean: [ 0.5, 0.5, 0.5 ]
std: [ 0.5, 0.5, 0.5 ]
pipeline_b:
- Load
- Resize:
size: [ 286, 286 ]
@ -99,10 +130,18 @@ data:
drop_last: False
dataset:
_type: GenerationUnpairedDataset
root_a: "/data/i2i/selfie2anime/testA"
root_b: "/data/i2i/selfie2anime/testB"
random_pair: False
pipeline:
root_a: "/data/face2cartoon/test/human"
root_b: "/data/face2cartoon/test/anime"
random_pair: True
pipeline_a:
- Load
- Resize:
size: [ 256, 256 ]
- ToTensor
- Normalize:
mean: [ 0.5, 0.5, 0.5 ]
std: [ 0.5, 0.5, 0.5 ]
pipeline_b:
- Load
- Resize:
size: [ 256, 256 ]

View File

@ -38,9 +38,9 @@ class SingleFolderDataset(Dataset):
@DATASET.register_module()
class GenerationUnpairedDataset(Dataset):
def __init__(self, root_a, root_b, random_pair, pipeline, with_path=False):
self.A = SingleFolderDataset(root_a, pipeline, with_path)
self.B = SingleFolderDataset(root_b, pipeline, with_path)
def __init__(self, root_a, root_b, random_pair, pipeline_a, pipeline_b, with_path=False):
self.A = SingleFolderDataset(root_a, pipeline_a, with_path)
self.B = SingleFolderDataset(root_b, pipeline_b, with_path)
self.with_path = with_path
self.random_pair = random_pair

View File

@ -1,11 +1,13 @@
from itertools import chain
import ignite.distributed as idist
import torch
from engine.base.i2i import EngineKernel, run_kernel
from engine.util.build import build_model
from engine.util.container import GANImageBuffer, LossContainer
from engine.util.loss import pixel_loss, gan_loss
from engine.util.loss import pixel_loss, gan_loss, feature_match_loss
from loss.I2I.edge_loss import EdgeLoss
from loss.I2I.minimal_geometry_distortion_constraint_loss import MGCLoss
from model.weight_init import generation_init_weights
@ -17,7 +19,10 @@ class CycleGANEngineKernel(EngineKernel):
self.gan_loss = gan_loss(config.loss.gan)
self.cycle_loss = LossContainer(config.loss.cycle.weight, pixel_loss(config.loss.cycle.level))
self.id_loss = LossContainer(config.loss.id.weight, pixel_loss(config.loss.id.level))
self.mgc_loss = LossContainer(config.loss.mgc.weight, MGCLoss())
self.mgc_loss = LossContainer(config.loss.mgc.weight, MGCLoss("opposite"))
self.fm_loss = LossContainer(config.loss.fm.weight, feature_match_loss(1, "same"))
self.edge_loss = LossContainer(config.loss.edge.weight, EdgeLoss(
"HED", hed_pretrained_model_path=config.loss.edge.hed_pretrained_model_path).to(idist.device()))
self.image_buffers = {k: GANImageBuffer(config.data.train.buffer_size or 50) for k in
self.discriminators.keys()}
@ -64,8 +69,12 @@ class CycleGANEngineKernel(EngineKernel):
loss[f"cycle_{ph}"] = self.cycle_loss(generated["a2b2a" if ph == "a" else "b2a2b"], batch[ph])
loss[f"id_{ph}"] = self.id_loss(generated[f"{ph}2{ph}"], batch[ph])
loss[f"mgc_{ph}"] = self.mgc_loss(generated["a2b" if ph == "a" else "b2a"], batch[ph])
loss[f"gan_{ph}"] = self.config.loss.gan.weight * self.gan_loss(
self.discriminators[ph](generated["a2b" if ph == "b" else "b2a"]), True)
prediction_fake = self.discriminators[ph](generated["a2b" if ph == "b" else "b2a"])
loss[f"gan_{ph}"] = self.config.loss.gan.weight * self.gan_loss(prediction_fake, True)
if self.fm_loss.weight > 0:
prediction_real = self.discriminators[ph](batch[ph])
loss[f"feature_match_{ph}"] = self.fm_loss(prediction_fake, prediction_real)
loss[f"edge_{ph}"] = self.edge_loss(generated["a2b" if ph == "a" else "b2a"], batch[ph], gt_is_edge=False)
return loss
def criterion_discriminators(self, batch, generated) -> dict:

View File

@ -101,9 +101,12 @@ class EngineKernel(object):
def _remove_no_grad_loss(loss_dict):
need_to_pop = []
for k in loss_dict:
if not isinstance(loss_dict[k], torch.Tensor):
loss_dict.pop(k)
need_to_pop.append(k)
for k in need_to_pop:
loss_dict.pop(k)
return loss_dict

View File

@ -23,3 +23,19 @@ def mse_loss(x, target_flag):
def bce_loss(x, target_flag):
return F.binary_cross_entropy_with_logits(x, torch.ones_like(x) if target_flag else torch.zeros_like(x))
def feature_match_loss(level, weight_policy):
compare_loss = pixel_loss(level)
assert weight_policy in ["same", "exponential_decline"]
def fm_loss(generated_features, target_features):
num_scale = len(generated_features)
loss = 0
for s_i in range(num_scale):
for i in range(len(generated_features[s_i]) - 1):
weight = 1 if weight_policy == "same" else 2 ** i
loss += weight * compare_loss(generated_features[s_i][i], target_features[s_i][i].detach()) / num_scale
return loss
return fm_loss

View File

@ -105,10 +105,12 @@ class MGCLoss(nn.Module):
Minimal Geometry-Distortion Constraint Loss from https://openreview.net/forum?id=R5M7Mxl1xZ
"""
def __init__(self, beta=0.5, lambda_=0.05, device=idist.device()):
def __init__(self, mi_to_loss_way="opposite", beta=0.5, lambda_=0.05, device=idist.device()):
super().__init__()
self.beta = beta
self.lambda_ = lambda_
assert mi_to_loss_way in ["opposite", "reciprocal"]
self.mi_to_loss_way = mi_to_loss_way
mu_y, mu_x = torch.meshgrid([torch.arange(-1, 1.25, 0.25), torch.arange(-1, 1.25, 0.25)])
self.mu_x = mu_x.flatten().to(device)
self.mu_y = mu_y.flatten().to(device)
@ -134,6 +136,8 @@ class MGCLoss(nn.Module):
def forward(self, fake, real):
rSMI = self.batch_rSMI(fake, real, self.mu_x, self.mu_y, self.beta, self.lambda_, self.R)
if self.mi_to_loss_way == "reciprocal":
return 1/rSMI.mean()
return -rSMI.mean()

View File

@ -1,5 +1,6 @@
import torch.nn as nn
import torch.nn.functional as F
import torch
class GANLoss(nn.Module):
@ -10,7 +11,7 @@ class GANLoss(nn.Module):
self.fake_label_val = fake_label_val
self.loss_type = loss_type
def forward(self, prediction, target_is_real: bool, is_discriminator=False):
def single_forward(self, prediction, target_is_real: bool, is_discriminator=False):
"""
gan loss forward
:param prediction: network prediction
@ -37,3 +38,14 @@ class GANLoss(nn.Module):
return loss
else:
raise NotImplementedError(f'GAN type {self.loss_type} is not implemented.')
def forward(self, prediction, target_is_real: bool, is_discriminator=False):
if isinstance(prediction, torch.Tensor):
# origin
return self.single_forward(prediction, target_is_real, is_discriminator)
elif isinstance(prediction, list):
# for multi scale discriminator, e.g. MultiScaleDiscriminator
loss = 0
for p in prediction:
loss += self.single_forward(p[-1], target_is_real, is_discriminator)
return loss

View File

@ -2,3 +2,4 @@ from model.registry import MODEL, NORMALIZATION
import model.base.normalization
import model.image_translation.UGATIT
import model.image_translation.CycleGAN
import model.image_translation.pix2pixHD

View File

@ -0,0 +1,29 @@
import torch.nn as nn
import torch.nn.functional as F
from model import MODEL
@MODEL.register_module()
class MultiScaleDiscriminator(nn.Module):
def __init__(self, num_scale, discriminator_cfg, down_sample_method="avg"):
super().__init__()
assert down_sample_method in ["avg", "bilinear"]
self.down_sample_method = down_sample_method
self.discriminator_list = nn.ModuleList([
MODEL.build_with(discriminator_cfg) for _ in range(num_scale)
])
def down_sample(self, x):
if self.down_sample_method == "avg":
return F.avg_pool2d(x, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)
if self.down_sample_method == "bilinear":
return F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=True)
def forward(self, x):
results = []
for discriminator in self.discriminator_list:
results.append(discriminator(x))
x = self.down_sample(x)
return results

View File

@ -53,11 +53,9 @@ class _Registry:
else:
raise TypeError(f'cfg must be a dict or a str, but got {type(cfg)}')
for k in args:
assert isinstance(k, str)
if k.startswith("_"):
warnings.warn(f"got param start with `_`: {k}, will remove it")
args.pop(k)
for invalid_key in [k for k in args.keys() if k.startswith("_")]:
warnings.warn(f"got param start with `_`: {invalid_key}, will remove it")
args.pop(invalid_key)
if not (isinstance(default_args, dict) or default_args is None):
raise TypeError('default_args must be a dict or None, '