TAFG good result
This commit is contained in:
parent
87cbcf34d3
commit
7ea9c6d0d5
@ -23,7 +23,8 @@ model:
|
|||||||
_bn_to_sync_bn: False
|
_bn_to_sync_bn: False
|
||||||
style_in_channels: 3
|
style_in_channels: 3
|
||||||
content_in_channels: 24
|
content_in_channels: 24
|
||||||
num_blocks: 8
|
num_adain_blocks: 8
|
||||||
|
num_res_blocks: 0
|
||||||
discriminator:
|
discriminator:
|
||||||
_type: MultiScaleDiscriminator
|
_type: MultiScaleDiscriminator
|
||||||
num_scale: 2
|
num_scale: 2
|
||||||
@ -47,21 +48,17 @@ loss:
|
|||||||
"11": 0.125
|
"11": 0.125
|
||||||
"20": 0.25
|
"20": 0.25
|
||||||
"29": 1
|
"29": 1
|
||||||
criterion: 'L2'
|
criterion: 'L1'
|
||||||
style_loss: False
|
style_loss: False
|
||||||
perceptual_loss: True
|
perceptual_loss: True
|
||||||
weight: 0.5
|
weight: 10
|
||||||
style:
|
style:
|
||||||
layer_weights:
|
layer_weights:
|
||||||
"1": 0.03125
|
"3": 1
|
||||||
"6": 0.0625
|
criterion: 'L1'
|
||||||
"11": 0.125
|
|
||||||
"20": 0.25
|
|
||||||
"29": 1
|
|
||||||
criterion: 'L2'
|
|
||||||
style_loss: True
|
style_loss: True
|
||||||
perceptual_loss: False
|
perceptual_loss: False
|
||||||
weight: 0
|
weight: 10
|
||||||
fm:
|
fm:
|
||||||
level: 1
|
level: 1
|
||||||
weight: 10
|
weight: 10
|
||||||
@ -71,6 +68,9 @@ loss:
|
|||||||
style_recon:
|
style_recon:
|
||||||
level: 1
|
level: 1
|
||||||
weight: 0
|
weight: 0
|
||||||
|
edge:
|
||||||
|
weight: 10
|
||||||
|
hed_pretrained_model_path: ./network-bsds500.pytorch
|
||||||
|
|
||||||
optimizers:
|
optimizers:
|
||||||
generator:
|
generator:
|
||||||
@ -91,7 +91,7 @@ data:
|
|||||||
target_lr: 0
|
target_lr: 0
|
||||||
buffer_size: 50
|
buffer_size: 50
|
||||||
dataloader:
|
dataloader:
|
||||||
batch_size: 24
|
batch_size: 8
|
||||||
shuffle: True
|
shuffle: True
|
||||||
num_workers: 2
|
num_workers: 2
|
||||||
pin_memory: True
|
pin_memory: True
|
||||||
|
|||||||
@ -1,20 +1,17 @@
|
|||||||
from itertools import chain
|
from itertools import chain
|
||||||
|
|
||||||
from omegaconf import OmegaConf
|
import ignite.distributed as idist
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import ignite.distributed as idist
|
|
||||||
from ignite.engine import Events
|
from ignite.engine import Events
|
||||||
|
|
||||||
from omegaconf import read_write, OmegaConf
|
from omegaconf import read_write, OmegaConf
|
||||||
|
|
||||||
from model.weight_init import generation_init_weights
|
|
||||||
from loss.I2I.perceptual_loss import PerceptualLoss
|
|
||||||
from loss.gan import GANLoss
|
|
||||||
|
|
||||||
from engine.base.i2i import EngineKernel, run_kernel
|
from engine.base.i2i import EngineKernel, run_kernel
|
||||||
from engine.util.build import build_model
|
from engine.util.build import build_model
|
||||||
|
from loss.I2I.edge_loss import EdgeLoss
|
||||||
|
from loss.I2I.perceptual_loss import PerceptualLoss
|
||||||
|
from loss.gan import GANLoss
|
||||||
|
from model.weight_init import generation_init_weights
|
||||||
|
|
||||||
|
|
||||||
class TAFGEngineKernel(EngineKernel):
|
class TAFGEngineKernel(EngineKernel):
|
||||||
@ -24,6 +21,10 @@ class TAFGEngineKernel(EngineKernel):
|
|||||||
perceptual_loss_cfg.pop("weight")
|
perceptual_loss_cfg.pop("weight")
|
||||||
self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device())
|
self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device())
|
||||||
|
|
||||||
|
style_loss_cfg = OmegaConf.to_container(config.loss.style)
|
||||||
|
style_loss_cfg.pop("weight")
|
||||||
|
self.style_loss = PerceptualLoss(**style_loss_cfg).to(idist.device())
|
||||||
|
|
||||||
gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
|
gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
|
||||||
gan_loss_cfg.pop("weight")
|
gan_loss_cfg.pop("weight")
|
||||||
self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
|
self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
|
||||||
@ -32,6 +33,9 @@ class TAFGEngineKernel(EngineKernel):
|
|||||||
self.recon_loss = nn.L1Loss() if config.loss.recon.level == 1 else nn.MSELoss()
|
self.recon_loss = nn.L1Loss() if config.loss.recon.level == 1 else nn.MSELoss()
|
||||||
self.style_recon_loss = nn.L1Loss() if config.loss.style_recon.level == 1 else nn.MSELoss()
|
self.style_recon_loss = nn.L1Loss() if config.loss.style_recon.level == 1 else nn.MSELoss()
|
||||||
|
|
||||||
|
self.edge_loss = EdgeLoss("HED", hed_pretrained_model_path=config.loss.edge.hed_pretrained_model_path).to(
|
||||||
|
idist.device())
|
||||||
|
|
||||||
def _process_batch(self, batch, inference=False):
|
def _process_batch(self, batch, inference=False):
|
||||||
# batch["b"] = batch["b"] if inference else batch["b"][0].expand(batch["a"].size())
|
# batch["b"] = batch["b"] if inference else batch["b"][0].expand(batch["a"].size())
|
||||||
return batch
|
return batch
|
||||||
@ -74,7 +78,9 @@ class TAFGEngineKernel(EngineKernel):
|
|||||||
batch = self._process_batch(batch)
|
batch = self._process_batch(batch)
|
||||||
loss = dict()
|
loss = dict()
|
||||||
loss_perceptual, _ = self.perceptual_loss(generated["b"], batch["a"])
|
loss_perceptual, _ = self.perceptual_loss(generated["b"], batch["a"])
|
||||||
loss["perceptual"] = loss_perceptual * self.config.loss.perceptual.weight
|
_, loss_style = self.style_loss(generated["a"], batch["a"])
|
||||||
|
loss["style"] = self.config.loss.style.weight * loss_style
|
||||||
|
loss["perceptual"] = self.config.loss.perceptual.weight * loss_perceptual
|
||||||
for phase in "ab":
|
for phase in "ab":
|
||||||
pred_fake = self.discriminators[phase](generated[phase])
|
pred_fake = self.discriminators[phase](generated[phase])
|
||||||
loss[f"gan_{phase}"] = 0
|
loss[f"gan_{phase}"] = 0
|
||||||
@ -93,10 +99,7 @@ class TAFGEngineKernel(EngineKernel):
|
|||||||
loss_fm += self.fm_loss(pred_fake[i][j], pred_real[i][j].detach()) / num_scale_discriminator
|
loss_fm += self.fm_loss(pred_fake[i][j], pred_real[i][j].detach()) / num_scale_discriminator
|
||||||
loss[f"fm_{phase}"] = self.config.loss.fm.weight * loss_fm
|
loss[f"fm_{phase}"] = self.config.loss.fm.weight * loss_fm
|
||||||
loss["recon"] = self.config.loss.recon.weight * self.recon_loss(generated["a"], batch["a"])
|
loss["recon"] = self.config.loss.recon.weight * self.recon_loss(generated["a"], batch["a"])
|
||||||
# loss["style_recon"] = self.config.loss.style_recon.weight * self.style_recon_loss(
|
loss["edge"] = self.config.loss.edge.weight * self.edge_loss(generated["b"], batch["edge_a"][:, 0:1, :, :])
|
||||||
# self.generators["main"].module.style_encoders["b"](batch["b"]),
|
|
||||||
# self.generators["main"].module.style_encoders["b"](generated["b"])
|
|
||||||
# )
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def criterion_discriminators(self, batch, generated) -> dict:
|
def criterion_discriminators(self, batch, generated) -> dict:
|
||||||
|
|||||||
@ -1,9 +1,10 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from .base import ResidualBlock
|
|
||||||
from model.registry import MODEL
|
|
||||||
from torchvision.models import vgg19
|
from torchvision.models import vgg19
|
||||||
|
|
||||||
from model.normalization import select_norm_layer
|
from model.normalization import select_norm_layer
|
||||||
|
from model.registry import MODEL
|
||||||
|
from .base import ResidualBlock
|
||||||
|
|
||||||
|
|
||||||
class VGG19StyleEncoder(nn.Module):
|
class VGG19StyleEncoder(nn.Module):
|
||||||
@ -169,25 +170,37 @@ class StyleGenerator(nn.Module):
|
|||||||
|
|
||||||
@MODEL.register_module("TAFG-Generator")
|
@MODEL.register_module("TAFG-Generator")
|
||||||
class Generator(nn.Module):
|
class Generator(nn.Module):
|
||||||
def __init__(self, style_in_channels, content_in_channels=3, out_channels=3, style_dim=512, num_blocks=8,
|
def __init__(self, style_in_channels, content_in_channels=3, out_channels=3, style_dim=512,
|
||||||
|
num_adain_blocks=8, num_res_blocks=4,
|
||||||
base_channels=64, padding_mode="reflect"):
|
base_channels=64, padding_mode="reflect"):
|
||||||
super(Generator, self).__init__()
|
super(Generator, self).__init__()
|
||||||
self.num_blocks = num_blocks
|
self.num_adain_blocks=num_adain_blocks
|
||||||
self.style_encoders = nn.ModuleDict({
|
self.style_encoders = nn.ModuleDict({
|
||||||
"a": StyleGenerator(style_in_channels, style_dim=style_dim, num_blocks=num_blocks,
|
"a": StyleGenerator(style_in_channels, style_dim=style_dim, num_blocks=num_adain_blocks,
|
||||||
base_channels=base_channels, padding_mode=padding_mode),
|
base_channels=base_channels, padding_mode=padding_mode),
|
||||||
"b": StyleGenerator(style_in_channels, style_dim=style_dim, num_blocks=num_blocks,
|
"b": StyleGenerator(style_in_channels, style_dim=style_dim, num_blocks=num_adain_blocks,
|
||||||
base_channels=base_channels, padding_mode=padding_mode),
|
base_channels=base_channels, padding_mode=padding_mode),
|
||||||
})
|
})
|
||||||
self.content_encoder = ContentEncoder(content_in_channels, base_channels, num_blocks=num_blocks,
|
self.content_encoder = ContentEncoder(content_in_channels, base_channels, num_blocks=8,
|
||||||
padding_mode=padding_mode, norm_type="IN")
|
padding_mode=padding_mode, norm_type="IN")
|
||||||
res_block_channels = 2 ** 2 * base_channels
|
res_block_channels = 2 ** 2 * base_channels
|
||||||
self.adain_resnet_a = nn.ModuleList([
|
|
||||||
ResidualBlock(res_block_channels, padding_mode, "AdaIN", use_bias=True) for _ in range(num_blocks)
|
self.resnet = nn.ModuleDict({
|
||||||
|
"a": nn.Sequential(*[
|
||||||
|
ResidualBlock(res_block_channels, padding_mode, "IN", use_bias=True) for _ in range(num_res_blocks)
|
||||||
|
]),
|
||||||
|
"b": nn.Sequential(*[
|
||||||
|
ResidualBlock(res_block_channels, padding_mode, "IN", use_bias=True) for _ in range(num_res_blocks)
|
||||||
])
|
])
|
||||||
self.adain_resnet_b = nn.ModuleList([
|
})
|
||||||
ResidualBlock(res_block_channels, padding_mode, "AdaIN", use_bias=True) for _ in range(num_blocks)
|
self.adain_resnet = nn.ModuleDict({
|
||||||
|
"a": nn.ModuleList([
|
||||||
|
ResidualBlock(res_block_channels, padding_mode, "AdaIN", use_bias=True) for _ in range(num_adain_blocks)
|
||||||
|
]),
|
||||||
|
"b": nn.ModuleList([
|
||||||
|
ResidualBlock(res_block_channels, padding_mode, "AdaIN", use_bias=True) for _ in range(num_adain_blocks)
|
||||||
])
|
])
|
||||||
|
})
|
||||||
|
|
||||||
self.decoders = nn.ModuleDict({
|
self.decoders = nn.ModuleDict({
|
||||||
"a": Decoder(out_channels, base_channels, norm_type="LN", num_blocks=0, padding_mode=padding_mode),
|
"a": Decoder(out_channels, base_channels, norm_type="LN", num_blocks=0, padding_mode=padding_mode),
|
||||||
@ -196,10 +209,10 @@ class Generator(nn.Module):
|
|||||||
|
|
||||||
def forward(self, content_img, style_img, which_decoder: str = "a"):
|
def forward(self, content_img, style_img, which_decoder: str = "a"):
|
||||||
x = self.content_encoder(content_img)
|
x = self.content_encoder(content_img)
|
||||||
|
x = self.resnet[which_decoder](x)
|
||||||
styles = self.style_encoders[which_decoder](style_img)
|
styles = self.style_encoders[which_decoder](style_img)
|
||||||
styles = torch.chunk(styles, self.num_blocks * 2, dim=1)
|
styles = torch.chunk(styles, self.num_adain_blocks * 2, dim=1)
|
||||||
resnet = self.adain_resnet_a if which_decoder == "a" else self.adain_resnet_b
|
for i, ar in enumerate(self.adain_resnet[which_decoder]):
|
||||||
for i, ar in enumerate(resnet):
|
|
||||||
ar.norm1.set_style(styles[2 * i])
|
ar.norm1.set_style(styles[2 * i])
|
||||||
ar.norm2.set_style(styles[2 * i + 1])
|
ar.norm2.set_style(styles[2 * i + 1])
|
||||||
x = ar(x)
|
x = ar(x)
|
||||||
|
|||||||
@ -1,5 +1,7 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
# edit from https://gist.github.com/hysts/81a0d30ac4f33dfa0c8859383aec42c2
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import pathlib
|
import pathlib
|
||||||
|
|
||||||
@ -8,33 +10,36 @@ import numpy as np
|
|||||||
from tensorboard.backend.event_processing import event_accumulator
|
from tensorboard.backend.event_processing import event_accumulator
|
||||||
|
|
||||||
|
|
||||||
|
def save(outdir: pathlib.Path, tag, event_acc):
|
||||||
|
events = event_acc.Images(tag)
|
||||||
|
|
||||||
|
for index, event in enumerate(events):
|
||||||
|
s = np.frombuffer(event.encoded_image_string, dtype=np.uint8)
|
||||||
|
image = cv2.imdecode(s, cv2.IMREAD_COLOR)
|
||||||
|
outpath = outdir / f"{tag.replace('/', '_')}@{index}.png"
|
||||||
|
cv2.imwrite(outpath.as_posix(), image)
|
||||||
|
|
||||||
|
|
||||||
# ffmpeg -framerate 1 -i ./tmp/test_b/%04d.jpg -vcodec mpeg4 test_b.mp4
|
# ffmpeg -framerate 1 -i ./tmp/test_b/%04d.jpg -vcodec mpeg4 test_b.mp4
|
||||||
# https://gist.github.com/hysts/81a0d30ac4f33dfa0c8859383aec42c2
|
|
||||||
def main():
|
def main():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--path', type=str, required=True)
|
parser.add_argument('--path', type=str, required=True)
|
||||||
parser.add_argument('--outdir', type=str, required=True)
|
parser.add_argument('--outdir', type=str, required=True)
|
||||||
|
parser.add_argument("--tag", type=str, required=False)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
event_acc = event_accumulator.EventAccumulator(
|
event_acc = event_accumulator.EventAccumulator(args.path, size_guidance={'images': 0})
|
||||||
args.path, size_guidance={'images': 0})
|
|
||||||
event_acc.Reload()
|
event_acc.Reload()
|
||||||
|
|
||||||
outdir = pathlib.Path(args.outdir)
|
outdir = pathlib.Path(args.outdir)
|
||||||
outdir.mkdir(exist_ok=True, parents=True)
|
outdir.mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
|
if args.tag is None:
|
||||||
for tag in event_acc.Tags()['images']:
|
for tag in event_acc.Tags()['images']:
|
||||||
events = event_acc.Images(tag)
|
save(outdir, tag, event_acc)
|
||||||
|
else:
|
||||||
tag_name = tag.replace('/', '_')
|
assert args.tag in event_acc.Tags()['images'], f"{args.tag} not in {event_acc.Tags()['images']}"
|
||||||
dirpath = outdir / tag_name
|
save(outdir, args.tag, event_acc)
|
||||||
dirpath.mkdir(exist_ok=True, parents=True)
|
|
||||||
|
|
||||||
for index, event in enumerate(events):
|
|
||||||
s = np.frombuffer(event.encoded_image_string, dtype=np.uint8)
|
|
||||||
image = cv2.imdecode(s, cv2.IMREAD_COLOR)
|
|
||||||
outpath = dirpath / '{:04}.jpg'.format(index)
|
|
||||||
cv2.imwrite(outpath.as_posix(), image)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user