add code for few-shot baseline

This commit is contained in:
Ray Wong 2020-08-10 08:51:26 +08:00
parent 649f2244f7
commit 8102651a28
4 changed files with 265 additions and 0 deletions

View File

@ -0,0 +1,62 @@
name: cross-domain
engine: crossdomain
result_dir: ./result
distributed:
model:
# broadcast_buffers: False
misc:
random_seed: 1004
checkpoints:
interval: 2000
log:
logger:
level: 20 # DEBUG(10) INFO(20)
model:
_type: resnet10
baseline:
plusplus: False
optimizers:
_type: Adam
data:
dataloader:
batch_size: 1024
shuffle: True
num_workers: 16
pin_memory: True
drop_last: True
dataset:
train:
path: /data/few-shot/mini_imagenet_full_size/train
pipeline:
- RandomResizedCrop:
size: [256, 256]
- ColorJitter:
brightness: 0.4
contrast: 0.4
saturation: 0.4
- RandomHorizontalFlip
- ToTensor
- Normalize:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val:
path: /data/few-shot/mini_imagenet_full_size/val
pipeline:
- Resize:
size: [286, 286]
- RandomCrop:
size: [256, 256]
- ToTensor
- Normalize:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]

97
engine/crossdomain.py Normal file
View File

@ -0,0 +1,97 @@
import torch
import torch.nn as nn
from torchvision.datasets import ImageFolder
import ignite.distributed as idist
from ignite.contrib.metrics.gpu_info import GpuInfo
from ignite.contrib.handlers.tensorboard_logger import TensorboardLogger, global_step_from_engine, OutputHandler, \
WeightsScalarHandler, GradsHistHandler, WeightsHistHandler, GradsScalarHandler
from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events
from ignite.metrics import Accuracy, Loss, RunningAverage
from ignite.contrib.engines.common import save_best_model_by_val_score
from ignite.contrib.handlers import ProgressBar
from util.build import build_model, build_optimizer
from util.handler import setup_common_handlers
from data.transform import transform_pipeline
def baseline_trainer(config, logger, val_loader):
model = build_model(config.model, config.distributed.model)
optimizer = build_optimizer(model.parameters(), config.baseline.optimizers)
loss_fn = nn.CrossEntropyLoss()
trainer = create_supervised_trainer(model, optimizer, loss_fn, idist.device(), non_blocking=True)
trainer.logger = logger
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
ProgressBar(ncols=0).attach(trainer)
val_metrics = {
"accuracy": Accuracy(),
"nll": Loss(loss_fn)
}
evaluator = create_supervised_evaluator(model, val_metrics, idist.device())
ProgressBar(ncols=0).attach(evaluator)
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_loss(engine):
logger.info(f"Epoch[{engine.state.epoch}] Loss: {engine.state.output:.2f}")
evaluator.run(val_loader)
metrics = evaluator.state.metrics
logger.info("Training Results - Avg accuracy: {:.2f} Avg loss: {:.2f}"
.format(trainer.state.epoch, metrics["accuracy"], metrics["nll"]))
if idist.get_rank() == 0:
GpuInfo().attach(trainer, name='gpu')
tb_logger = TensorboardLogger(log_dir=config.output_dir)
tb_logger.attach(
evaluator,
log_handler=OutputHandler(
tag="val",
metric_names='all',
global_step_transform=global_step_from_engine(trainer),
),
event_name=Events.EPOCH_COMPLETED
)
tb_logger.attach(trainer, log_handler=WeightsScalarHandler(model),
event_name=Events.EPOCH_COMPLETED(every=10))
tb_logger.attach(trainer, log_handler=WeightsHistHandler(model), event_name=Events.EPOCH_COMPLETED(every=25))
tb_logger.attach(trainer, log_handler=GradsScalarHandler(model),
event_name=Events.EPOCH_COMPLETED(every=10))
tb_logger.attach(trainer, log_handler=GradsHistHandler(model), event_name=Events.EPOCH_COMPLETED(every=25))
@trainer.on(Events.COMPLETED)
def _():
tb_logger.close()
to_save = dict(model=model, optimizer=optimizer, trainer=trainer)
setup_common_handlers(trainer, config.output_dir, print_interval_event=Events.EPOCH_COMPLETED, to_save=to_save,
save_interval_event=Events.EPOCH_COMPLETED(every=25), n_saved=5,
metrics_to_print=["loss"])
save_best_model_by_val_score(config.output_dir, evaluator, model, "accuracy", 1, trainer)
return trainer
def run(task, config, logger):
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
logger.info(f"start task {task}")
if task == "baseline":
train_dataset = ImageFolder(config.baseline.data.dataset.train.path,
transform=transform_pipeline(config.baseline.data.dataset.train.pipeline))
val_dataset = ImageFolder(config.baseline.data.dataset.val.path,
transform=transform_pipeline(config.baseline.data.dataset.val.pipeline))
logger.info(f"train with dataset:\n{train_dataset}")
train_data_loader = idist.auto_dataloader(train_dataset, **config.baseline.data.dataloader)
val_data_loader = idist.auto_dataloader(val_dataset, **config.baseline.data.dataloader)
trainer = baseline_trainer(config, logger, val_data_loader)
try:
trainer.run(train_data_loader, max_epochs=400)
except Exception:
import traceback
print(traceback.format_exc())
else:
return NotImplemented(f"invalid task: {task}")

View File

@ -1,2 +1,3 @@
from model.registry import MODEL
import model.residual_generator
import model.fewshot

105
model/fewshot.py Normal file
View File

@ -0,0 +1,105 @@
import math
import torch.nn as nn
from .registry import MODEL
# --- gaussian initialize ---
def init_layer(l):
# Initialization using fan-in
if isinstance(l, nn.Conv2d):
n = l.kernel_size[0] * l.kernel_size[1] * l.out_channels
l.weight.data.normal_(0, math.sqrt(2.0 / float(n)))
elif isinstance(l, nn.BatchNorm2d):
l.weight.data.fill_(1)
l.bias.data.fill_(0)
elif isinstance(l, nn.Linear):
l.bias.data.fill_(0)
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class SimpleBlock(nn.Module):
def __init__(self, in_channels, out_channels, half_res, leakyrelu=False):
super(SimpleBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True) if not leakyrelu else nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
)
self.relu = nn.ReLU(inplace=True) if not leakyrelu else nn.LeakyReLU(0.2, inplace=True)
if in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, 2 if half_res else 1, bias=False),
nn.BatchNorm2d(out_channels)
)
else:
self.shortcut = nn.Identity()
def forward(self, x):
o = self.block(x)
return self.relu(o + self.shortcut(x))
class ResNet(nn.Module):
def __init__(self, block, layers, dims, num_classes=None, classifier_type="linear", flatten=True, leakyrelu=False):
super().__init__()
assert len(layers) == 4, 'Can have only four stages'
self.inplanes = 64
self.start = nn.Sequential(
nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(self.inplanes),
nn.ReLU(inplace=True) if not leakyrelu else nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
trunk = []
in_channels = self.inplanes
for i in range(4):
for j in range(layers[i]):
half_res = i >= 1 and j == 0
trunk.append(block(in_channels, dims[i], half_res, leakyrelu))
in_channels = dims[i]
if flatten:
trunk.append(nn.AvgPool2d(7))
trunk.append(Flatten())
if num_classes is not None:
if classifier_type == "linear":
trunk.append(nn.Linear(in_channels, num_classes))
elif classifier_type == "distlinear":
pass
else:
raise ValueError(f"invalid classifier_type:{classifier_type}")
self.trunk = nn.Sequential(*trunk)
self.apply(init_layer)
def forward(self, x):
return self.trunk(self.start(x))
@MODEL.register_module()
def resnet10(num_classes=None, classifier_type="linear", flatten=True, leakyrelu=False):
return ResNet(SimpleBlock, [1, 1, 1, 1], [64, 128, 256, 512], num_classes, classifier_type, flatten, leakyrelu)
@MODEL.register_module()
def resnet18(num_classes=None, classifier_type="linear", flatten=True, leakyrelu=False):
return ResNet(SimpleBlock, [2, 2, 2, 2], [64, 128, 256, 512], num_classes, classifier_type, flatten, leakyrelu)
@MODEL.register_module()
def resnet34(num_classes=None, classifier_type="linear", flatten=True, leakyrelu=False):
return ResNet(SimpleBlock, [3, 4, 6, 3], [64, 128, 256, 512], num_classes, classifier_type, flatten, leakyrelu)