update a lot
This commit is contained in:
parent
ab545843bf
commit
97ded53b30
146
configs/synthesizers/TSIT.yml
Normal file
146
configs/synthesizers/TSIT.yml
Normal file
@ -0,0 +1,146 @@
|
||||
name: self2anime-TSIT
|
||||
engine: TSIT
|
||||
result_dir: ./result
|
||||
max_pairs: 1500000
|
||||
|
||||
handler:
|
||||
clear_cuda_cache: True
|
||||
set_epoch_for_dist_sampler: True
|
||||
checkpoint:
|
||||
epoch_interval: 1 # checkpoint once per `epoch_interval` epoch
|
||||
n_saved: 2
|
||||
tensorboard:
|
||||
scalar: 100 # log scalar `scalar` times per epoch
|
||||
image: 2 # log image `image` times per epoch
|
||||
|
||||
|
||||
misc:
|
||||
random_seed: 324
|
||||
|
||||
model:
|
||||
generator:
|
||||
_type: TSIT-Generator
|
||||
_bn_to_sync_bn: True
|
||||
style_in_channels: 3
|
||||
content_in_channels: 3
|
||||
num_blocks: 5
|
||||
input_layer_type: "conv7x7"
|
||||
discriminator:
|
||||
_type: MultiScaleDiscriminator
|
||||
num_scale: 2
|
||||
discriminator_cfg:
|
||||
_type: PatchDiscriminator
|
||||
in_channels: 3
|
||||
base_channels: 64
|
||||
use_spectral: True
|
||||
need_intermediate_feature: True
|
||||
|
||||
loss:
|
||||
gan:
|
||||
loss_type: hinge
|
||||
real_label_val: 1.0
|
||||
fake_label_val: 0.0
|
||||
weight: 1.0
|
||||
perceptual:
|
||||
layer_weights:
|
||||
"1": 0.03125
|
||||
"6": 0.0625
|
||||
"11": 0.125
|
||||
"20": 0.25
|
||||
"29": 1
|
||||
criterion: 'L1'
|
||||
style_loss: False
|
||||
perceptual_loss: True
|
||||
weight: 1
|
||||
style:
|
||||
layer_weights:
|
||||
"1": 0.03125
|
||||
"6": 0.0625
|
||||
"11": 0.125
|
||||
"20": 0.25
|
||||
"29": 1
|
||||
criterion: 'L2'
|
||||
style_loss: True
|
||||
perceptual_loss: False
|
||||
weight: 0
|
||||
fm:
|
||||
level: 1
|
||||
weight: 1
|
||||
|
||||
optimizers:
|
||||
generator:
|
||||
_type: Adam
|
||||
lr: 0.0001
|
||||
betas: [ 0, 0.9 ]
|
||||
weight_decay: 0.0001
|
||||
discriminator:
|
||||
_type: Adam
|
||||
lr: 4e-4
|
||||
betas: [ 0, 0.9 ]
|
||||
weight_decay: 0.0001
|
||||
|
||||
data:
|
||||
train:
|
||||
scheduler:
|
||||
start_proportion: 0.5
|
||||
target_lr: 0
|
||||
buffer_size: 50
|
||||
dataloader:
|
||||
batch_size: 1
|
||||
shuffle: True
|
||||
num_workers: 2
|
||||
pin_memory: True
|
||||
drop_last: True
|
||||
dataset:
|
||||
_type: GenerationUnpairedDatasetWithEdge
|
||||
root_a: "/data/i2i/VoxCeleb2Anime/trainA"
|
||||
root_b: "/data/i2i/VoxCeleb2Anime/trainB"
|
||||
edges_path: "/data/i2i/VoxCeleb2Anime/edges"
|
||||
landmarks_path: "/data/i2i/VoxCeleb2Anime/landmarks"
|
||||
edge_type: "landmark_hed"
|
||||
size: [ 128, 128 ]
|
||||
random_pair: True
|
||||
pipeline:
|
||||
- Load
|
||||
- Resize:
|
||||
size: [ 128, 128 ]
|
||||
- ToTensor
|
||||
- Normalize:
|
||||
mean: [ 0.5, 0.5, 0.5 ]
|
||||
std: [ 0.5, 0.5, 0.5 ]
|
||||
test:
|
||||
dataloader:
|
||||
batch_size: 8
|
||||
shuffle: False
|
||||
num_workers: 1
|
||||
pin_memory: False
|
||||
drop_last: False
|
||||
dataset:
|
||||
_type: GenerationUnpairedDatasetWithEdge
|
||||
root_a: "/data/i2i/VoxCeleb2Anime/testA"
|
||||
root_b: "/data/i2i/VoxCeleb2Anime/testB"
|
||||
edges_path: "/data/i2i/VoxCeleb2Anime/edges"
|
||||
landmarks_path: "/data/i2i/VoxCeleb2Anime/landmarks"
|
||||
edge_type: "landmark_hed"
|
||||
random_pair: False
|
||||
size: [ 128, 128 ]
|
||||
pipeline:
|
||||
- Load
|
||||
- Resize:
|
||||
size: [ 128, 128 ]
|
||||
- ToTensor
|
||||
- Normalize:
|
||||
mean: [ 0.5, 0.5, 0.5 ]
|
||||
std: [ 0.5, 0.5, 0.5 ]
|
||||
video_dataset:
|
||||
_type: SingleFolderDataset
|
||||
root: "/data/i2i/VoxCeleb2Anime/test_video_frames/"
|
||||
with_path: True
|
||||
pipeline:
|
||||
- Load
|
||||
- Resize:
|
||||
size: [ 256, 256 ]
|
||||
- ToTensor
|
||||
- Normalize:
|
||||
mean: [ 0.5, 0.5, 0.5 ]
|
||||
std: [ 0.5, 0.5, 0.5 ]
|
||||
106
engine/TSIT.py
Normal file
106
engine/TSIT.py
Normal file
@ -0,0 +1,106 @@
|
||||
from itertools import chain
|
||||
|
||||
import ignite.distributed as idist
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from engine.base.i2i import EngineKernel, run_kernel
|
||||
from engine.util.build import build_model
|
||||
from loss.I2I.perceptual_loss import PerceptualLoss
|
||||
from loss.gan import GANLoss
|
||||
from model.weight_init import generation_init_weights
|
||||
|
||||
|
||||
class TSITEngineKernel(EngineKernel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
perceptual_loss_cfg = OmegaConf.to_container(config.loss.perceptual)
|
||||
perceptual_loss_cfg.pop("weight")
|
||||
self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device())
|
||||
|
||||
gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
|
||||
gan_loss_cfg.pop("weight")
|
||||
self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
|
||||
|
||||
self.fm_loss = nn.L1Loss() if config.loss.fm.level == 1 else nn.MSELoss()
|
||||
|
||||
def build_models(self) -> (dict, dict):
|
||||
generators = dict(
|
||||
main=build_model(self.config.model.generator)
|
||||
)
|
||||
discriminators = dict(
|
||||
b=build_model(self.config.model.discriminator)
|
||||
)
|
||||
self.logger.debug(discriminators["b"])
|
||||
self.logger.debug(generators["main"])
|
||||
|
||||
for m in chain(generators.values(), discriminators.values()):
|
||||
generation_init_weights(m)
|
||||
|
||||
return generators, discriminators
|
||||
|
||||
def setup_after_g(self):
|
||||
for discriminator in self.discriminators.values():
|
||||
discriminator.requires_grad_(True)
|
||||
|
||||
def setup_before_g(self):
|
||||
for discriminator in self.discriminators.values():
|
||||
discriminator.requires_grad_(False)
|
||||
|
||||
def forward(self, batch, inference=False) -> dict:
|
||||
with torch.set_grad_enabled(not inference):
|
||||
fake = dict(
|
||||
b=self.generators["main"](content_img=batch["a"], style_img=batch["b"])
|
||||
)
|
||||
return fake
|
||||
|
||||
def criterion_generators(self, batch, generated) -> dict:
|
||||
loss = dict()
|
||||
loss_perceptual, _ = self.perceptual_loss(generated["b"], batch["a"])
|
||||
loss["perceptual"] = loss_perceptual * self.config.loss.perceptual.weight
|
||||
for phase in "b":
|
||||
pred_fake = self.discriminators[phase](generated[phase])
|
||||
loss[f"gan_{phase}"] = 0
|
||||
for sub_pred_fake in pred_fake:
|
||||
# last output is actual prediction
|
||||
loss[f"gan_{phase}"] += self.config.loss.gan.weight * self.gan_loss(sub_pred_fake[-1], True)
|
||||
|
||||
if self.config.loss.fm.weight > 0 and phase == "b":
|
||||
pred_real = self.discriminators[phase](batch[phase])
|
||||
loss_fm = 0
|
||||
num_scale_discriminator = len(pred_fake)
|
||||
for i in range(num_scale_discriminator):
|
||||
# last output is the final prediction, so we exclude it
|
||||
num_intermediate_outputs = len(pred_fake[i]) - 1
|
||||
for j in range(num_intermediate_outputs):
|
||||
loss_fm += self.fm_loss(pred_fake[i][j], pred_real[i][j].detach()) / num_scale_discriminator
|
||||
loss[f"fm_{phase}"] = self.config.loss.fm.weight * loss_fm
|
||||
return loss
|
||||
|
||||
def criterion_discriminators(self, batch, generated) -> dict:
|
||||
loss = dict()
|
||||
for phase in self.discriminators.keys():
|
||||
pred_real = self.discriminators[phase](batch[phase])
|
||||
pred_fake = self.discriminators[phase](generated[phase].detach())
|
||||
loss[f"gan_{phase}"] = 0
|
||||
for i in range(len(pred_fake)):
|
||||
loss[f"gan_{phase}"] += (self.gan_loss(pred_fake[i][-1], False, is_discriminator=True)
|
||||
+ self.gan_loss(pred_real[i][-1], True, is_discriminator=True)) / 2
|
||||
return loss
|
||||
|
||||
def intermediate_images(self, batch, generated) -> dict:
|
||||
"""
|
||||
returned dict must be like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
|
||||
:param batch:
|
||||
:param generated: dict of images
|
||||
:return: dict like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
|
||||
"""
|
||||
return dict(
|
||||
b=[batch["a"].detach(), batch["b"].detach(), generated["b"].detach()]
|
||||
)
|
||||
|
||||
|
||||
def run(task, config, _):
|
||||
kernel = TSITEngineKernel(config)
|
||||
run_kernel(task, config, kernel)
|
||||
192
model/GAN/TSIT.py
Normal file
192
model/GAN/TSIT.py
Normal file
@ -0,0 +1,192 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from model import MODEL
|
||||
from model.normalization import AdaptiveInstanceNorm2d
|
||||
from model.normalization import select_norm_layer
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, padding_mode='zeros', norm_type="IN", use_bias=None,
|
||||
use_spectral=True):
|
||||
super().__init__()
|
||||
self.padding_mode = padding_mode
|
||||
self.use_bias = use_bias
|
||||
self.use_spectral = use_spectral
|
||||
if use_bias is None:
|
||||
# Only for IN, use bias since it does not have affine parameters.
|
||||
self.use_bias = norm_type == "IN"
|
||||
norm_layer = select_norm_layer(norm_type)
|
||||
self.main = nn.Sequential(
|
||||
self.conv_block(in_channels, in_channels),
|
||||
norm_layer(in_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
self.conv_block(in_channels, out_channels),
|
||||
norm_layer(out_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
)
|
||||
self.skip = nn.Sequential(
|
||||
self.conv_block(in_channels, out_channels, padding=0, kernel_size=1),
|
||||
norm_layer(out_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
)
|
||||
|
||||
def conv_block(self, in_channels, out_channels, kernel_size=3, padding=1):
|
||||
conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding,
|
||||
padding_mode=self.padding_mode, bias=self.use_bias)
|
||||
if self.use_spectral:
|
||||
return nn.utils.spectral_norm(conv)
|
||||
else:
|
||||
return conv
|
||||
|
||||
def forward(self, x):
|
||||
return self.main(x) + self.skip(x)
|
||||
|
||||
|
||||
class Interpolation(nn.Module):
|
||||
def __init__(self, scale_factor=None, mode='nearest', align_corners=None):
|
||||
super(Interpolation, self).__init__()
|
||||
self.scale_factor = scale_factor
|
||||
self.mode = mode
|
||||
self.align_corners = align_corners
|
||||
|
||||
def forward(self, x):
|
||||
return F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners,
|
||||
recompute_scale_factor=False)
|
||||
|
||||
def __repr__(self):
|
||||
return f"DownSampling(scale_factor={self.scale_factor}, mode={self.mode}, align_corners={self.align_corners})"
|
||||
|
||||
|
||||
class FADE(nn.Module):
|
||||
def __init__(self, use_spectral, features_channels, in_channels, affine=False, track_running_stats=True):
|
||||
super().__init__()
|
||||
self.bn = nn.BatchNorm2d(num_features=in_channels, affine=affine, track_running_stats=track_running_stats)
|
||||
self.alpha_conv = conv_block(use_spectral, features_channels, in_channels, kernel_size=3, padding=1,
|
||||
padding_mode="zeros")
|
||||
self.beta_conv = conv_block(use_spectral, features_channels, in_channels, kernel_size=3, padding=1,
|
||||
padding_mode="zeros")
|
||||
|
||||
def forward(self, x, feature):
|
||||
alpha = self.alpha_conv(feature)
|
||||
beta = self.beta_conv(feature)
|
||||
x = self.bn(x)
|
||||
return alpha * x + beta
|
||||
|
||||
|
||||
class FADEResBlock(nn.Module):
|
||||
def __init__(self, use_spectral, features_channels, in_channels, out_channels):
|
||||
super().__init__()
|
||||
self.main = nn.Sequential(
|
||||
FADE(use_spectral, features_channels, in_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
conv_block(use_spectral, in_channels, in_channels, kernel_size=3, padding=1),
|
||||
FADE(use_spectral, features_channels, in_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
conv_block(use_spectral, in_channels, out_channels, kernel_size=3, padding=1),
|
||||
)
|
||||
self.skip = nn.Sequential(
|
||||
FADE(use_spectral, features_channels, in_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
conv_block(use_spectral, in_channels, out_channels, kernel_size=1, padding=0),
|
||||
)
|
||||
self.up_sample = Interpolation(2, mode="nearest")
|
||||
|
||||
@staticmethod
|
||||
def forward_with_fade(module, x, feature):
|
||||
for layer in module:
|
||||
if layer.__class__.__name__ == "FADE":
|
||||
x = layer(x, feature)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
def forward(self, x, feature):
|
||||
out = self.forward_with_fade(self.main, x, feature) + self.forward_with_fade(self.main, x, feature)
|
||||
return self.up_sample(out)
|
||||
|
||||
|
||||
def conv_block(use_spectral, in_channels, out_channels, **kwargs):
|
||||
conv = nn.Conv2d(in_channels, out_channels, **kwargs)
|
||||
return nn.utils.spectral_norm(conv) if use_spectral else conv
|
||||
|
||||
|
||||
@MODEL.register_module("TSIT-Generator")
|
||||
class TSITGenerator(nn.Module):
|
||||
def __init__(self, num_blocks=7, base_channels=64, content_in_channels=3, style_in_channels=3,
|
||||
out_channels=3, use_spectral=True, input_layer_type="conv1x1"):
|
||||
super().__init__()
|
||||
self.num_blocks = num_blocks
|
||||
self.base_channels = base_channels
|
||||
self.use_spectral = use_spectral
|
||||
|
||||
self.content_input_layer = self.build_input_layer(content_in_channels, base_channels, input_layer_type)
|
||||
self.style_input_layer = self.build_input_layer(style_in_channels, base_channels, input_layer_type)
|
||||
self.content_stream = self.build_stream()
|
||||
self.style_stream = self.build_stream()
|
||||
self.generator = self.build_generator()
|
||||
self.end_conv = nn.Sequential(
|
||||
conv_block(use_spectral, base_channels, out_channels, kernel_size=7, padding=3, padding_mode="zeros"),
|
||||
nn.Tanh()
|
||||
)
|
||||
|
||||
def build_generator(self):
|
||||
stream_sequence = []
|
||||
multiple_now = min(2 ** self.num_blocks, 2 ** 4)
|
||||
for i in range(1, self.num_blocks + 1):
|
||||
m = self.num_blocks - i
|
||||
multiple_prev = multiple_now
|
||||
multiple_now = min(2 ** m, 2 ** 4)
|
||||
stream_sequence.append(nn.Sequential(
|
||||
AdaptiveInstanceNorm2d(multiple_prev * self.base_channels),
|
||||
FADEResBlock(self.use_spectral, multiple_prev * self.base_channels, multiple_prev * self.base_channels,
|
||||
multiple_now * self.base_channels)
|
||||
))
|
||||
return nn.ModuleList(stream_sequence)
|
||||
|
||||
def build_input_layer(self, in_channels, out_channels, input_layer_type="conv7x7"):
|
||||
if input_layer_type == "conv7x7":
|
||||
return nn.Sequential(
|
||||
conv_block(self.use_spectral, in_channels, out_channels, kernel_size=7, stride=1,
|
||||
padding_mode="zeros", padding=3, bias=True),
|
||||
select_norm_layer("IN")(out_channels),
|
||||
nn.ReLU(inplace=True)
|
||||
)
|
||||
elif input_layer_type == "conv1x1":
|
||||
return conv_block(self.use_spectral, in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
else:
|
||||
raise NotImplemented
|
||||
|
||||
def build_stream(self):
|
||||
multiple_now = 1
|
||||
stream_sequence = []
|
||||
for i in range(1, self.num_blocks + 1):
|
||||
multiple_prev = multiple_now
|
||||
multiple_now = min(2 ** i, 2 ** 4)
|
||||
stream_sequence.append(nn.Sequential(
|
||||
Interpolation(scale_factor=0.5, mode="nearest"),
|
||||
ResBlock(multiple_prev * self.base_channels, multiple_now * self.base_channels,
|
||||
use_spectral=self.use_spectral)
|
||||
))
|
||||
return nn.ModuleList(stream_sequence)
|
||||
|
||||
def forward(self, content_img, style_img):
|
||||
c = self.content_input_layer(content_img)
|
||||
s = self.style_input_layer(style_img)
|
||||
content_features = []
|
||||
style_features = []
|
||||
for i in range(self.num_blocks):
|
||||
s = self.style_stream[i](s)
|
||||
c = self.content_stream[i](c)
|
||||
content_features.append(c)
|
||||
style_features.append(s)
|
||||
z = torch.randn(size=content_features[-1].size(), device=content_features[-1].device)
|
||||
|
||||
for i in range(self.num_blocks):
|
||||
m = - i - 1
|
||||
layer = self.generator[i]
|
||||
layer[0].set_style(torch.cat(torch.std_mean(style_features[m], dim=[2, 3]), dim=1))
|
||||
z = layer[0](z)
|
||||
z = layer[1](z, content_features[m])
|
||||
return self.end_conv(z)
|
||||
@ -4,3 +4,4 @@ import model.GAN.TAFG
|
||||
import model.GAN.UGATIT
|
||||
import model.GAN.wrapper
|
||||
import model.GAN.base
|
||||
import model.GAN.TSIT
|
||||
@ -1,6 +1,7 @@
|
||||
import torch.nn as nn
|
||||
import functools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def select_norm_layer(norm_type):
|
||||
|
||||
8
run.sh
8
run.sh
@ -5,16 +5,18 @@ TASK=$2
|
||||
GPUS=$3
|
||||
MORE_ARG=${*:4}
|
||||
|
||||
RANDOM_MASTER=$(shuf -i 2000-65000 -n 1)
|
||||
|
||||
_command="print(len('${GPUS}'.split(',')))"
|
||||
GPU_COUNT=$(python3 -c "${_command}")
|
||||
|
||||
echo "GPU_COUNT:${GPU_COUNT}"
|
||||
|
||||
echo CUDA_VISIBLE_DEVICES=$GPUS \
|
||||
PYTHONPATH=.:$PYTHONPATH OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node="$GPU_COUNT" \
|
||||
PYTHONPATH=.:$PYTHONPATH OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node="$GPU_COUNT" \
|
||||
main.py "$TASK" "$CONFIG" --backup_config --setup_output_dir --setup_random_seed "$MORE_ARG"
|
||||
|
||||
CUDA_VISIBLE_DEVICES=$GPUS \
|
||||
PYTHONPATH=.:$PYTHONPATH OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node="$GPU_COUNT" \
|
||||
PYTHONPATH=.:$PYTHONPATH OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node="$GPU_COUNT" \
|
||||
--master_port=${RANDOM_MASTER} \
|
||||
main.py "$TASK" "$CONFIG" $MORE_ARG --backup_config --setup_output_dir --setup_random_seed
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user