TAFG update

This commit is contained in:
Ray Wong 2020-09-18 12:03:44 +08:00
parent 61e04de8a5
commit b01016edb5
6 changed files with 91 additions and 59 deletions

View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?> <?xml version="1.0" encoding="UTF-8"?>
<project version="4"> <project version="4">
<component name="PublishConfigData" autoUpload="Always" serverName="15d" remoteFilesAllowedToDisappearOnAutoupload="false"> <component name="PublishConfigData" autoUpload="Always" serverName="14d" remoteFilesAllowedToDisappearOnAutoupload="false">
<serverData> <serverData>
<paths name="14d"> <paths name="14d">
<serverdata> <serverdata>

View File

@ -1,7 +1,7 @@
name: TAFG-vox2 name: TAFG-vox2
engine: TAFG engine: TAFG
result_dir: ./result result_dir: ./result
max_pairs: 1500000 max_pairs: 1000000
handler: handler:
clear_cuda_cache: True clear_cuda_cache: True
@ -12,10 +12,13 @@ handler:
tensorboard: tensorboard:
scalar: 100 # log scalar `scalar` times per epoch scalar: 100 # log scalar `scalar` times per epoch
image: 4 # log image `image` times per epoch image: 4 # log image `image` times per epoch
test:
random: True
images: 10
misc: misc:
random_seed: 123 random_seed: 1004
model: model:
generator: generator:
@ -23,10 +26,13 @@ model:
_bn_to_sync_bn: False _bn_to_sync_bn: False
style_in_channels: 3 style_in_channels: 3
content_in_channels: 24 content_in_channels: 24
num_adain_blocks: 8 use_spectral_norm: False
num_res_blocks: 8 style_encoder_type: StyleEncoder
use_spectral_norm: True num_style_conv: 4
style_use_fc: False style_dim: 8
num_adain_blocks: 4
num_res_blocks: 4
discriminator: discriminator:
_type: MultiScaleDiscriminator _type: MultiScaleDiscriminator
num_scale: 2 num_scale: 2
@ -54,17 +60,24 @@ loss:
style_loss: False style_loss: False
perceptual_loss: True perceptual_loss: True
weight: 0 weight: 0
style:
layer_weights:
"3": 1
criterion: 'L1'
style_loss: True
perceptual_loss: False
weight: 10
recon: recon:
level: 1 level: 1
weight: 10 weight: 10
style_recon: style_recon:
level: 1 level: 1
weight: 5 weight: 1
content_recon: content_recon:
level: 1 level: 1
weight: 10 weight: 1
edge: edge:
weight: 10 weight: 5
hed_pretrained_model_path: ./network-bsds500.pytorch hed_pretrained_model_path: ./network-bsds500.pytorch
cycle: cycle:
level: 1 level: 1
@ -89,7 +102,7 @@ data:
target_lr: 0 target_lr: 0
buffer_size: 50 buffer_size: 50
dataloader: dataloader:
batch_size: 1 batch_size: 8
shuffle: True shuffle: True
num_workers: 1 num_workers: 1
pin_memory: True pin_memory: True

View File

@ -20,6 +20,10 @@ class TAFGEngineKernel(EngineKernel):
perceptual_loss_cfg.pop("weight") perceptual_loss_cfg.pop("weight")
self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device()) self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device())
style_loss_cfg = OmegaConf.to_container(config.loss.style)
style_loss_cfg.pop("weight")
self.style_loss = PerceptualLoss(**style_loss_cfg).to(idist.device())
gan_loss_cfg = OmegaConf.to_container(config.loss.gan) gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
gan_loss_cfg.pop("weight") gan_loss_cfg.pop("weight")
self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device()) self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
@ -68,14 +72,14 @@ class TAFGEngineKernel(EngineKernel):
contents = dict() contents = dict()
images = dict() images = dict()
with torch.set_grad_enabled(not inference): with torch.set_grad_enabled(not inference):
contents["a"], styles["a"] = generator.encode(batch["a"]["edge"], batch["a"]["img"], "a", "a")
contents["b"], styles["b"] = generator.encode(batch["b"]["edge"], batch["b"]["img"], "b", "b")
for ph in "ab": for ph in "ab":
contents[ph], styles[ph] = generator.encode(batch[ph]["edge"], batch[ph]["img"], ph, ph) images[f"{ph}2{ph}"] = generator.decode(contents[ph], styles[ph], ph)
for ph in ("a2b", "b2a"): images["a2b"] = generator.decode(contents["a"], styles["b"], "b")
images[f"fake_{ph[-1]}"] = generator.decode(contents[ph[0]], styles[ph[-1]], ph[-1]) contents["recon_a"], styles["recon_b"] = generator.encode(self.edge_loss.edge_extractor(images["a2b"]),
contents["recon_a"], styles["recon_b"] = generator.encode( images["a2b"], "b", "b")
self.edge_loss.edge_extractor(images["fake_b"]), images["fake_b"], "b", "b") images["cycle_b"] = generator.decode(contents["b"], styles["recon_b"], "b")
images["a2a"] = generator.decode(contents["a"], styles["a"], "a")
images["b2b"] = generator.decode(contents["b"], styles["recon_b"], "b")
images["cycle_a"] = generator.decode(contents["recon_a"], styles["a"], "a") images["cycle_a"] = generator.decode(contents["recon_a"], styles["a"], "a")
return dict(styles=styles, contents=contents, images=images) return dict(styles=styles, contents=contents, images=images)
@ -87,35 +91,38 @@ class TAFGEngineKernel(EngineKernel):
loss[f"recon_image_{ph}"] = self.config.loss.recon.weight * self.recon_loss( loss[f"recon_image_{ph}"] = self.config.loss.recon.weight * self.recon_loss(
generated["images"][f"{ph}2{ph}"], batch[ph]["img"]) generated["images"][f"{ph}2{ph}"], batch[ph]["img"])
pred_fake = self.discriminators[ph](generated["images"][f"fake_{ph}"]) pred_fake = self.discriminators[ph](generated["images"][f"a2{ph}"])
loss[f"gan_{ph}"] = 0 loss[f"gan_{ph}"] = 0
for sub_pred_fake in pred_fake: for sub_pred_fake in pred_fake:
# last output is actual prediction # last output is actual prediction
loss[f"gan_{ph}"] += self.gan_loss(sub_pred_fake[-1], True) * self.config.loss.gan.weight loss[f"gan_{ph}"] += self.gan_loss(sub_pred_fake[-1], True) * self.config.loss.gan.weight
loss[f"recon_content_a"] = self.config.loss.content_recon.weight * self.content_recon_loss( loss["recon_content_a"] = self.config.loss.content_recon.weight * self.content_recon_loss(
generated["contents"]["a"], generated["contents"]["recon_a"] generated["contents"]["a"], generated["contents"]["recon_a"]
) )
loss[f"recon_style_b"] = self.config.loss.style_recon.weight * self.style_recon_loss( loss["recon_style_b"] = self.config.loss.style_recon.weight * self.style_recon_loss(
generated["styles"]["b"], generated["styles"]["recon_b"] generated["styles"]["b"], generated["styles"]["recon_b"]
) )
for ph in ("a2b", "b2a"):
if self.config.loss.perceptual.weight > 0: if self.config.loss.perceptual.weight > 0:
loss[f"perceptual_{ph}"] = self.config.loss.perceptual.weight * self.perceptual_loss( loss["perceptual_a"] = self.config.loss.perceptual.weight * self.perceptual_loss(
batch[ph[0]]["img"], generated["images"][f"fake_{ph[-1]}"] batch["a"]["img"], generated["images"]["a2b"]
)
if self.config.loss.edge.weight > 0:
loss[f"edge_a"] = self.config.loss.edge.weight * self.edge_loss(
generated["images"]["fake_b"], batch["a"]["edge"][:, 0:1, :, :]
)
loss[f"edge_b"] = self.config.loss.edge.weight * self.edge_loss(
generated["images"]["fake_a"], batch["b"]["edge"]
) )
for ph in "ab":
if self.config.loss.cycle.weight > 0: if self.config.loss.cycle.weight > 0:
loss[f"cycle_a"] = self.config.loss.cycle.weight * self.cycle_loss( loss[f"cycle_{ph}"] = self.config.loss.cycle.weight * self.cycle_loss(
batch["a"]["img"], generated["images"]["cycle_a"] batch[ph]["img"], generated["images"][f"cycle_{ph}"]
) )
if self.config.loss.style.weight > 0:
loss[f"style_{ph}"] = self.config.loss.style.weight * self.style_loss(
batch[ph]["img"], generated["images"][f"a2{ph}"]
)
if self.config.loss.edge.weight > 0:
loss["edge_a"] = self.config.loss.edge.weight * self.edge_loss(
generated["images"]["a2b"], batch["a"]["edge"][:, 0:1, :, :]
)
return loss return loss
def criterion_discriminators(self, batch, generated) -> dict: def criterion_discriminators(self, batch, generated) -> dict:
@ -123,7 +130,7 @@ class TAFGEngineKernel(EngineKernel):
# batch = self._process_batch(batch) # batch = self._process_batch(batch)
for phase in self.discriminators.keys(): for phase in self.discriminators.keys():
pred_real = self.discriminators[phase](batch[phase]["img"]) pred_real = self.discriminators[phase](batch[phase]["img"])
pred_fake = self.discriminators[phase](generated["images"][f"fake_{phase}"].detach()) pred_fake = self.discriminators[phase](generated["images"][f"a2{phase}"].detach())
loss[f"gan_{phase}"] = 0 loss[f"gan_{phase}"] = 0
for i in range(len(pred_fake)): for i in range(len(pred_fake)):
loss[f"gan_{phase}"] += (self.gan_loss(pred_fake[i][-1], False, is_discriminator=True) loss[f"gan_{phase}"] += (self.gan_loss(pred_fake[i][-1], False, is_discriminator=True)
@ -142,13 +149,13 @@ class TAFGEngineKernel(EngineKernel):
a=[batch["a"]["edge"][:, 0:1, :, :].expand(-1, 3, -1, -1).detach(), a=[batch["a"]["edge"][:, 0:1, :, :].expand(-1, 3, -1, -1).detach(),
batch["a"]["img"].detach(), batch["a"]["img"].detach(),
generated["images"]["a2a"].detach(), generated["images"]["a2a"].detach(),
generated["images"]["fake_b"].detach(), generated["images"]["a2b"].detach(),
generated["images"]["cycle_a"].detach(), generated["images"]["cycle_a"].detach(),
], ],
b=[batch["b"]["edge"].expand(-1, 3, -1, -1).detach(), b=[batch["b"]["edge"].expand(-1, 3, -1, -1).detach(),
batch["b"]["img"].detach(), batch["b"]["img"].detach(),
generated["images"]["b2b"].detach(), generated["images"]["b2b"].detach(),
generated["images"]["fake_a"].detach()] generated["images"]["cycle_b"].detach()]
) )
def change_engine(self, config, trainer): def change_engine(self, config, trainer):

View File

@ -58,6 +58,10 @@ class EngineKernel(object):
self.logger = logging.getLogger(config.name) self.logger = logging.getLogger(config.name)
self.generators, self.discriminators = self.build_models() self.generators, self.discriminators = self.build_models()
self.train_generator_first = True self.train_generator_first = True
self.engine = None
def bind_engine(self, engine):
self.engine = engine
def build_models(self) -> (dict, dict): def build_models(self) -> (dict, dict):
raise NotImplemented raise NotImplemented
@ -154,6 +158,7 @@ def get_trainer(config, kernel: EngineKernel):
trainer.add_event_handler(Events.ITERATION_COMPLETED, lr_shd) trainer.add_event_handler(Events.ITERATION_COMPLETED, lr_shd)
kernel.change_engine(config, trainer) kernel.change_engine(config, trainer)
kernel.bind_engine(trainer)
RunningAverage(output_transform=lambda x: sum(x["loss"]["g"].values()), epoch_bound=False).attach(trainer, "loss_g") RunningAverage(output_transform=lambda x: sum(x["loss"]["g"].values()), epoch_bound=False).attach(trainer, "loss_g")
RunningAverage(output_transform=lambda x: sum(x["loss"]["d"].values()), epoch_bound=False).attach(trainer, "loss_d") RunningAverage(output_transform=lambda x: sum(x["loss"]["d"].values()), epoch_bound=False).attach(trainer, "loss_d")
@ -186,9 +191,11 @@ def get_trainer(config, kernel: EngineKernel):
with torch.no_grad(): with torch.no_grad():
g = torch.Generator() g = torch.Generator()
g.manual_seed(config.misc.random_seed) g.manual_seed(config.misc.random_seed + engine.state.epoch
random_start = torch.randperm(len(engine.state.test_dataset) - 11, generator=g).tolist()[0] if config.handler.test.random else config.misc.random_seed)
for i in range(random_start, random_start + 10): random_start = \
torch.randperm(len(engine.state.test_dataset) - config.handler.test.images, generator=g).tolist()[0]
for i in range(random_start, random_start + config.handler.test.images):
batch = convert_tensor(engine.state.test_dataset[i], idist.device()) batch = convert_tensor(engine.state.test_dataset[i], idist.device())
for k in batch: for k in batch:
if isinstance(batch[k], torch.Tensor): if isinstance(batch[k], torch.Tensor):

View File

@ -8,7 +8,7 @@ from model.normalization import select_norm_layer
class StyleEncoder(nn.Module): class StyleEncoder(nn.Module):
def __init__(self, in_channels, out_dim, num_conv, base_channels=64, use_spectral_norm=False, def __init__(self, in_channels, out_dim, num_conv, base_channels=64, use_spectral_norm=False,
padding_mode='reflect', activation_type="ReLU", norm_type="NONE"): max_multiple=2, padding_mode='reflect', activation_type="ReLU", norm_type="NONE"):
super(StyleEncoder, self).__init__() super(StyleEncoder, self).__init__()
sequence = [Conv2dBlock( sequence = [Conv2dBlock(
@ -19,7 +19,7 @@ class StyleEncoder(nn.Module):
multiple_now = 1 multiple_now = 1
for i in range(1, num_conv + 1): for i in range(1, num_conv + 1):
multiple_prev = multiple_now multiple_prev = multiple_now
multiple_now = min(2 ** i, 2 ** 2) multiple_now = min(2 ** i, 2 ** max_multiple)
sequence.append(Conv2dBlock( sequence.append(Conv2dBlock(
multiple_prev * base_channels, multiple_now * base_channels, multiple_prev * base_channels, multiple_now * base_channels,
kernel_size=4, stride=2, padding=1, padding_mode=padding_mode, kernel_size=4, stride=2, padding=1, padding_mode=padding_mode,
@ -50,12 +50,8 @@ class ContentEncoder(nn.Module):
use_spectral_norm=use_spectral_norm, activation_type=activation_type, norm_type=norm_type use_spectral_norm=use_spectral_norm, activation_type=activation_type, norm_type=norm_type
)) ))
for _ in range(num_res_blocks): sequence += [ResBlock(base_channels * (2 ** num_down_sampling), use_spectral_norm, padding_mode, norm_type,
sequence.append( activation_type) for _ in range(num_res_blocks)]
ResBlock(base_channels * (2 ** num_down_sampling), use_spectral_norm, padding_mode, norm_type,
activation_type)
)
self.sequence = nn.Sequential(*sequence) self.sequence = nn.Sequential(*sequence)
def forward(self, x): def forward(self, x):

View File

@ -4,7 +4,7 @@ from torchvision.models import vgg19
from model.normalization import select_norm_layer from model.normalization import select_norm_layer
from model.registry import MODEL from model.registry import MODEL
from .MUNIT import ContentEncoder, Fusion, Decoder from .MUNIT import ContentEncoder, Fusion, Decoder, StyleEncoder
from .base import ResBlock from .base import ResBlock
@ -56,17 +56,26 @@ class VGG19StyleEncoder(nn.Module):
@MODEL.register_module("TAFG-Generator") @MODEL.register_module("TAFG-Generator")
class Generator(nn.Module): class Generator(nn.Module):
def __init__(self, style_in_channels, content_in_channels=3, out_channels=3, use_spectral_norm=False, def __init__(self, style_in_channels, content_in_channels=3, out_channels=3, use_spectral_norm=False,
style_dim=512, style_use_fc=True, style_encoder_type="StyleEncoder", num_style_conv=4, style_dim=512, num_adain_blocks=8,
num_adain_blocks=8, num_res_blocks=8, num_res_blocks=8, base_channels=64, padding_mode="reflect"):
base_channels=64, padding_mode="reflect"):
super(Generator, self).__init__() super(Generator, self).__init__()
self.num_adain_blocks = num_adain_blocks self.num_adain_blocks = num_adain_blocks
if style_encoder_type == "StyleEncoder":
self.style_encoders = nn.ModuleDict(dict(
a=StyleEncoder(style_in_channels, style_dim, num_style_conv, base_channels, use_spectral_norm,
max_multiple=4, padding_mode=padding_mode, norm_type="NONE"),
b=StyleEncoder(style_in_channels, style_dim, num_style_conv, base_channels, use_spectral_norm,
max_multiple=4, padding_mode=padding_mode, norm_type="NONE"),
))
elif style_encoder_type == "VGG19StyleEncoder":
self.style_encoders = nn.ModuleDict(dict( self.style_encoders = nn.ModuleDict(dict(
a=VGG19StyleEncoder(style_in_channels, base_channels, style_dim=style_dim, padding_mode=padding_mode, a=VGG19StyleEncoder(style_in_channels, base_channels, style_dim=style_dim, padding_mode=padding_mode,
norm_type="NONE"), norm_type="NONE"),
b=VGG19StyleEncoder(style_in_channels, base_channels, style_dim=style_dim, padding_mode=padding_mode, b=VGG19StyleEncoder(style_in_channels, base_channels, style_dim=style_dim, padding_mode=padding_mode,
norm_type="NONE", fix_vgg19=False) norm_type="NONE", fix_vgg19=False)
)) ))
else:
raise NotImplemented(f"do not support {style_encoder_type}")
resnet_channels = 2 ** 2 * base_channels resnet_channels = 2 ** 2 * base_channels
self.style_converters = nn.ModuleDict(dict( self.style_converters = nn.ModuleDict(dict(
a=Fusion(style_dim, num_adain_blocks * 2 * resnet_channels * 2, base_features=256, n_blocks=3, a=Fusion(style_dim, num_adain_blocks * 2 * resnet_channels * 2, base_features=256, n_blocks=3,