add new dataset type

This commit is contained in:
Ray Wong 2020-09-24 16:50:53 +08:00
parent ca55318253
commit fbea96f6d7

View File

@ -1,6 +1,7 @@
import os import os
import pickle import pickle
from collections import defaultdict from collections import defaultdict
from itertools import permutations, combinations
from pathlib import Path from pathlib import Path
import lmdb import lmdb
@ -237,3 +238,50 @@ class GenerationUnpairedDatasetWithEdge(Dataset):
def __repr__(self): def __repr__(self):
return f"<GenerationUnpairedDatasetWithEdge:\n\tA: {self.A}\n\tB: {self.B}>\nPipeline:\n{self.A.pipeline}" return f"<GenerationUnpairedDatasetWithEdge:\n\tA: {self.A}\n\tB: {self.B}>\nPipeline:\n{self.A.pipeline}"
@DATASET.register_module()
class PoseFacesWithSingleAnime(Dataset):
def __init__(self, root_face, root_anime, landmark_path, num_face, face_pipeline, anime_pipeline, img_size,
with_order=True):
self.num_face = num_face
self.landmark_path = Path(landmark_path)
self.with_order = with_order
self.root_face = Path(root_face)
self.root_anime = Path(root_anime)
self.img_size = img_size
self.face_samples = self.iter_folders()
self.face_pipeline = transform_pipeline(face_pipeline)
self.B = SingleFolderDataset(root_anime, anime_pipeline, with_path=True)
def iter_folders(self):
pics_per_person = defaultdict(list)
for p in self.root_face.glob("*.jpg"):
pics_per_person[p.stem[:7]].append(p.stem)
data = []
for p in pics_per_person:
if len(pics_per_person[p]) >= self.num_face:
if self.with_order:
data.extend(list(combinations(pics_per_person[p], self.num_face)))
else:
data.extend(list(permutations(pics_per_person[p], self.num_face)))
return data
def read_pose(self, pose_txt):
key_points, part_labels, part_edge = dlib_landmark.read_keypoints(pose_txt, size=self.img_size)
dist_tensor = normalize_tensor(torch.from_numpy(dlib_landmark.dist_tensor(key_points, size=self.img_size)))
part_labels = normalize_tensor(torch.from_numpy(part_labels))
part_edge = torch.from_numpy(part_edge).unsqueeze(0).float()
return torch.cat([part_labels, part_edge, dist_tensor])
def __len__(self):
return len(self.face_samples)
def __getitem__(self, idx):
output = dict()
output["anime_img"], output["anime_path"] = self.B[torch.randint(len(self.B), (1,)).item()]
for i, f in enumerate(self.face_samples[idx]):
output[f"face_{i}"] = self.face_pipeline(self.root_face / f"{f}.jpg")
output[f"pose_{i}"] = self.read_pose(self.landmark_path / self.root_face.name / f"{f}.txt")
output[f"stem_{i}"] = f
return output