from itertools import chain from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F import torchvision.utils import ignite.distributed as idist from ignite.engine import Events, Engine from ignite.contrib.handlers.param_scheduler import PiecewiseLinear from ignite.metrics import RunningAverage from ignite.contrib.handlers import ProgressBar from ignite.utils import convert_tensor from ignite.contrib.handlers.tensorboard_logger import TensorboardLogger, OptimizerParamsHandler, OutputHandler from omegaconf import OmegaConf import data from loss.gan import GANLoss from model.weight_init import generation_init_weights from model.GAN.residual_generator import GANImageBuffer from model.GAN.UGATIT import RhoClipper from util.image import make_2d_grid from util.handler import setup_common_handlers from util.build import build_model, build_optimizer def get_trainer(config, logger): generators = dict( a2b=build_model(config.model.generator, config.distributed.model), b2a=build_model(config.model.generator, config.distributed.model), ) discriminators = dict( la=build_model(config.model.local_discriminator, config.distributed.model), lb=build_model(config.model.local_discriminator, config.distributed.model), ga=build_model(config.model.global_discriminator, config.distributed.model), gb=build_model(config.model.global_discriminator, config.distributed.model), ) for m in chain(generators.values(), discriminators.values()): generation_init_weights(m) logger.debug(discriminators["ga"]) logger.debug(generators["a2b"]) optimizer_g = build_optimizer(chain(*[m.parameters() for m in generators.values()]), config.optimizers.generator) optimizer_d = build_optimizer(chain(*[m.parameters() for m in discriminators.values()]), config.optimizers.discriminator) milestones_values = [ (0, config.optimizers.generator.lr), (config.data.train.scheduler.start, config.optimizers.generator.lr), (config.max_iteration, config.data.train.scheduler.target_lr) ] lr_scheduler_g = PiecewiseLinear(optimizer_g, param_name="lr", milestones_values=milestones_values) milestones_values = [ (0, config.optimizers.discriminator.lr), (config.data.train.scheduler.start, config.optimizers.discriminator.lr), (config.max_iteration, config.data.train.scheduler.target_lr) ] lr_scheduler_d = PiecewiseLinear(optimizer_d, param_name="lr", milestones_values=milestones_values) gan_loss_cfg = OmegaConf.to_container(config.loss.gan) gan_loss_cfg.pop("weight") gan_loss = GANLoss(**gan_loss_cfg).to(idist.device()) cycle_loss = nn.L1Loss() if config.loss.cycle.level == 1 else nn.MSELoss() id_loss = nn.L1Loss() if config.loss.cycle.level == 1 else nn.MSELoss() bce_loss = nn.BCEWithLogitsLoss().to(idist.device()) mse_loss = lambda x, t: F.mse_loss(x, x.new_ones(x.size()) if t else x.new_zeros(x.size())) bce_loss = lambda x, t: F.binary_cross_entropy_with_logits(x, x.new_ones(x.size()) if t else x.new_zeros(x.size())) image_buffers = { k: GANImageBuffer(config.data.train.buffer_size if config.data.train.buffer_size is not None else 50) for k in discriminators.keys()} rho_clipper = RhoClipper(0, 1) def cal_generator_loss(name, real, fake, rec, identity, cam_g_pred, cam_g_id_pred, discriminator_l, discriminator_g): discriminator_g.requires_grad_(False) discriminator_l.requires_grad_(False) pred_fake_g, cam_gd_pred = discriminator_g(fake) pred_fake_l, cam_ld_pred = discriminator_l(fake) return { f"cycle_{name}": config.loss.cycle.weight * cycle_loss(real, rec), f"id_{name}": config.loss.id.weight * id_loss(real, identity), f"cam_{name}": config.loss.cam.weight * (bce_loss(cam_g_pred, True) + bce_loss(cam_g_id_pred, False)), f"gan_l_{name}": config.loss.gan.weight * gan_loss(pred_fake_l, True), f"gan_g_{name}": config.loss.gan.weight * gan_loss(pred_fake_g, True), f"gan_cam_g_{name}": config.loss.gan.weight * mse_loss(cam_gd_pred, True), f"gan_cam_l_{name}": config.loss.gan.weight * mse_loss(cam_ld_pred, True), } def cal_discriminator_loss(name, discriminator, real, fake): pred_real, cam_real = discriminator(real) pred_fake, cam_fake = discriminator(fake) # TODO: origin do not divide 2, but I think it better to divide 2. loss_gan = gan_loss(pred_real, True, is_discriminator=True) + gan_loss(pred_fake, False, is_discriminator=True) loss_cam = mse_loss(cam_real, True) + mse_loss(cam_fake, False) return {f"gan_{name}": loss_gan, f"cam_{name}": loss_cam} def _step(engine, batch): batch = convert_tensor(batch, idist.device()) real_a, real_b = batch["a"], batch["b"] fake = dict() cam_generator_pred = dict() rec = dict() identity = dict() cam_identity_pred = dict() heatmap = dict() fake["b"], cam_generator_pred["a"], heatmap["a2b"] = generators["a2b"](real_a) fake["a"], cam_generator_pred["b"], heatmap["b2a"] = generators["b2a"](real_b) rec["a"], _, heatmap["a2b2a"] = generators["b2a"](fake["b"]) rec["b"], _, heatmap["b2a2b"] = generators["a2b"](fake["a"]) identity["a"], cam_identity_pred["a"], heatmap["a2a"] = generators["b2a"](real_a) identity["b"], cam_identity_pred["b"], heatmap["b2b"] = generators["a2b"](real_b) optimizer_g.zero_grad() loss_g = dict() for n in ["a", "b"]: loss_g.update(cal_generator_loss(n, batch[n], fake[n], rec[n], identity[n], cam_generator_pred[n], cam_identity_pred[n], discriminators["l" + n], discriminators["g" + n])) sum(loss_g.values()).backward() optimizer_g.step() for generator in generators.values(): generator.apply(rho_clipper) for discriminator in discriminators.values(): discriminator.requires_grad_(True) optimizer_d.zero_grad() loss_d = dict() for k in discriminators.keys(): n = k[-1] # "a" or "b" loss_d.update( cal_discriminator_loss(k, discriminators[k], batch[n], image_buffers[k].query(fake[n].detach()))) sum(loss_d.values()).backward() optimizer_d.step() for h in heatmap: heatmap[h] = heatmap[h].detach() generated_img = {f"fake_{k}": fake[k].detach() for k in fake} generated_img.update({f"id_{k}": identity[k].detach() for k in identity}) generated_img.update({f"rec_{k}": rec[k].detach() for k in rec}) return { "loss": { "g": {ln: loss_g[ln].mean().item() for ln in loss_g}, "d": {ln: loss_d[ln].mean().item() for ln in loss_d}, }, "img": { "heatmap": heatmap, "generated": generated_img } } trainer = Engine(_step) trainer.logger = logger trainer.add_event_handler(Events.ITERATION_COMPLETED, lr_scheduler_g) trainer.add_event_handler(Events.ITERATION_COMPLETED, lr_scheduler_d) RunningAverage(output_transform=lambda x: sum(x["loss"]["g"].values())).attach(trainer, "loss_g") RunningAverage(output_transform=lambda x: sum(x["loss"]["d"].values())).attach(trainer, "loss_d") to_save = dict(optimizer_d=optimizer_d, optimizer_g=optimizer_g, trainer=trainer, lr_scheduler_d=lr_scheduler_d, lr_scheduler_g=lr_scheduler_g) to_save.update({f"generator_{k}": generators[k] for k in generators}) to_save.update({f"discriminator_{k}": discriminators[k] for k in discriminators}) setup_common_handlers(trainer, config.output_dir, resume_from=config.resume_from, n_saved=5, filename_prefix=config.name, to_save=to_save, print_interval_event=Events.ITERATION_COMPLETED(every=10) | Events.COMPLETED, metrics_to_print=["loss_g", "loss_d"], save_interval_event=Events.ITERATION_COMPLETED( every=config.checkpoints.interval) | Events.COMPLETED) @trainer.on(Events.ITERATION_COMPLETED(once=config.max_iteration)) def terminate(engine): engine.terminate() if idist.get_rank() == 0: # Create a logger tb_logger = TensorboardLogger(log_dir=config.output_dir) tb_writer = tb_logger.writer # Attach the logger to the trainer to log training loss at each iteration def global_step_transform(*args, **kwargs): return trainer.state.iteration def output_transform(output): loss = dict() for tl in output["loss"]: if isinstance(output["loss"][tl], dict): for l in output["loss"][tl]: loss[f"{tl}_{l}"] = output["loss"][tl][l] else: loss[tl] = output["loss"][tl] return loss tb_logger.attach( trainer, log_handler=OutputHandler( tag="loss", metric_names=["loss_g", "loss_d"], global_step_transform=global_step_transform, output_transform=output_transform ), event_name=Events.ITERATION_COMPLETED(every=50) ) tb_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer_g, tag="optimizer_g"), event_name=Events.ITERATION_STARTED(every=50) ) @trainer.on(Events.ITERATION_COMPLETED(every=config.checkpoints.interval)) def show_images(engine): tb_writer.add_image("train/img", make_2d_grid(engine.state.output["img"]["generated"].values()), engine.state.iteration) tb_writer.add_image("train/heatmap", make_2d_grid(engine.state.output["img"]["heatmap"].values()), engine.state.iteration) @trainer.on(Events.COMPLETED) @idist.one_rank_only() def _(): # We need to close the logger with we are done tb_logger.close() return trainer def run(task, config, logger): assert torch.backends.cudnn.enabled torch.backends.cudnn.benchmark = True logger.info(f"start task {task}") if task == "train": train_dataset = data.DATASET.build_with(config.data.train.dataset) logger.info(f"train with dataset:\n{train_dataset}") train_data_loader = idist.auto_dataloader(train_dataset, **config.data.train.dataloader) trainer = get_trainer(config, logger) try: trainer.run(train_data_loader, max_epochs=config.max_iteration // len(train_data_loader) + 1) except Exception: import traceback print(traceback.format_exc()) else: return NotImplemented(f"invalid task: {task}")