name: MUNIT-edges2shoes engine: MUNIT result_dir: ./result max_pairs: 1000000 handler: clear_cuda_cache: True set_epoch_for_dist_sampler: True checkpoint: epoch_interval: 1 # checkpoint once per `epoch_interval` epoch n_saved: 2 tensorboard: scalar: 100 # log scalar `scalar` times per epoch image: 2 # log image `image` times per epoch misc: random_seed: 324 model: generator: _type: MUNIT-Generator in_channels: 3 out_channels: 3 base_channels: 64 num_sampling: 2 num_style_dim: 8 num_style_conv: 4 num_content_res_blocks: 4 num_decoder_res_blocks: 4 num_fusion_dim: 256 num_fusion_blocks: 3 discriminator: _type: MultiScaleDiscriminator num_scale: 2 discriminator_cfg: _type: PatchDiscriminator in_channels: 3 base_channels: 64 use_spectral: True need_intermediate_feature: True loss: gan: loss_type: lsgan real_label_val: 1.0 fake_label_val: 0.0 weight: 1.0 perceptual: layer_weights: "1": 0.03125 "6": 0.0625 "11": 0.125 "20": 0.25 "29": 1 criterion: 'L1' style_loss: False perceptual_loss: True weight: 0 recon: level: 1 style: weight: 1 content: weight: 1 image: weight: 10 cycle: weight: 0 optimizers: generator: _type: Adam lr: 0.0001 betas: [ 0.5, 0.999 ] weight_decay: 0.0001 discriminator: _type: Adam lr: 4e-4 betas: [ 0.5, 0.999 ] weight_decay: 0.0001 data: train: scheduler: start_proportion: 0.5 target_lr: 0 buffer_size: 50 dataloader: batch_size: 1 shuffle: True num_workers: 1 pin_memory: True drop_last: True dataset: _type: GenerationUnpairedDataset root_a: "/data/i2i/edges2shoes/trainA" root_b: "/data/i2i/edges2shoes/trainB" random_pair: True pipeline: - Load - Resize: size: [ 286, 286 ] - RandomCrop: size: [ 256, 256 ] - RandomHorizontalFlip - ToTensor - Normalize: mean: [ 0.5, 0.5, 0.5 ] std: [ 0.5, 0.5, 0.5 ] test: which: dataset dataloader: batch_size: 8 shuffle: False num_workers: 1 pin_memory: False drop_last: False dataset: _type: GenerationUnpairedDataset root_a: "/data/i2i/edges2shoes/testA" root_b: "/data/i2i/edges2shoes/testB" random_pair: False pipeline: - Load - Resize: size: [ 256, 256 ] - ToTensor - Normalize: mean: [ 0.5, 0.5, 0.5 ] std: [ 0.5, 0.5, 0.5 ]