import torch import torch.nn as nn import torch.nn.functional as F from model.base.module import ResidualBlock, ReverseConv2dBlock, Conv2dBlock class StyleEncoder(nn.Module): def __init__(self, in_channels, style_dim, num_conv, end_size=(4, 4), base_channels=64, norm_type="IN", padding_mode='reflect', activation_type="LeakyReLU"): super().__init__() sequence = [Conv2dBlock( in_channels, base_channels, kernel_size=3, stride=1, padding=1, padding_mode=padding_mode, activation_type=activation_type, norm_type=norm_type )] multiple_now = 0 max_multiple = 3 for i in range(1, num_conv + 1): multiple_prev = multiple_now multiple_now = min(2 ** i, 2 ** max_multiple) sequence.append(Conv2dBlock( multiple_prev * base_channels, multiple_now * base_channels, kernel_size=3, stride=2, padding=1, padding_mode=padding_mode, activation_type=activation_type, norm_type=norm_type )) self.sequence = nn.Sequential(*sequence) self.fc_avg = nn.Linear(base_channels * (2 ** max_multiple) * end_size[0] * end_size[1], style_dim) self.fc_var = nn.Linear(base_channels * (2 ** max_multiple) * end_size[0] * end_size[1], style_dim) def forward(self, x): x = self.sequence(x) x = x.view(x.size(0), -1) return self.fc_avg(x), self.fc_var(x) class SPADEGenerator(nn.Module): def __init__(self, in_channels, out_channels, num_blocks, use_vae, num_z_dim, start_size=(4, 4), base_channels=64, padding_mode='reflect', activation_type="LeakyReLU"): super().__init__() self.sx, self.sy = start_size self.use_vae = use_vae self.num_z_dim = num_z_dim if use_vae: self.input_converter = nn.Linear(num_z_dim, 16 * base_channels * self.sx * self.sy) else: self.input_converter = nn.Conv2d(in_channels, 16 * base_channels, kernel_size=3, padding=1) sequence = [] multiple_now = 16 for i in range(num_blocks - 1, -1, -1): multiple_prev = multiple_now multiple_now = min(2 ** i, 2 ** 4) if i != num_blocks - 1: sequence.append(nn.Upsample(scale_factor=2)) sequence.append(ResidualBlock( base_channels * multiple_prev, out_channels=base_channels * multiple_now, padding_mode=padding_mode, activation_type=activation_type, norm_type="SPADE", pre_activation=True, additional_norm_kwargs=dict( condition_in_channels=in_channels, base_channels=128, base_norm_type="BN", activation_type="ReLU", padding_mode="zeros", gamma_bias=1.0 ) )) self.sequence = nn.Sequential(*sequence) self.output_converter = nn.Sequential( ReverseConv2dBlock(base_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode=padding_mode, activation_type=activation_type, norm_type="NONE"), nn.Tanh() ) def forward(self, seg, z=None): if self.use_vae: if z is None: z = torch.randn(seg.size(0), self.num_z_dim, device=seg.device) x = self.input_converter(z).view(seg.size(0), -1, self.sx, self.sy) else: x = self.input_converter(F.interpolate(seg, size=(self.sx, self.sy))) for blk in self.sequence: if isinstance(blk, ResidualBlock): downsampling_seg = F.interpolate(seg, size=x.size()[2:], mode='nearest') blk.conv1.normalization.set_condition_image(downsampling_seg) blk.conv2.normalization.set_condition_image(downsampling_seg) if blk.learn_skip_connection: blk.res_conv.normalization.set_condition_image(downsampling_seg) x = blk(x) return self.output_converter(x) if __name__ == '__main__': g = SPADEGenerator(3, 3, 7, False, 256) print(g) print(g(torch.randn(2, 3, 256, 256)).size())