from itertools import chain import ignite.distributed as idist import torch import torch.nn as nn from omegaconf import OmegaConf from engine.base.i2i import EngineKernel, run_kernel, TestEngineKernel from engine.util.build import build_model from loss.I2I.perceptual_loss import PerceptualLoss from loss.gan import GANLoss from model.weight_init import generation_init_weights class TSITEngineKernel(EngineKernel): def __init__(self, config): super().__init__(config) perceptual_loss_cfg = OmegaConf.to_container(config.loss.perceptual) perceptual_loss_cfg.pop("weight") self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device()) gan_loss_cfg = OmegaConf.to_container(config.loss.gan) gan_loss_cfg.pop("weight") self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device()) self.fm_loss = nn.L1Loss() if config.loss.fm.level == 1 else nn.MSELoss() def build_models(self) -> (dict, dict): generators = dict( main=build_model(self.config.model.generator) ) discriminators = dict( b=build_model(self.config.model.discriminator) ) self.logger.debug(discriminators["b"]) self.logger.debug(generators["main"]) for m in chain(generators.values(), discriminators.values()): generation_init_weights(m) return generators, discriminators def setup_after_g(self): for discriminator in self.discriminators.values(): discriminator.requires_grad_(True) def setup_before_g(self): for discriminator in self.discriminators.values(): discriminator.requires_grad_(False) def forward(self, batch, inference=False) -> dict: with torch.set_grad_enabled(not inference): fake = dict( b=self.generators["main"](content_img=batch["a"], style_img=batch["b"]) ) return fake def criterion_generators(self, batch, generated) -> dict: loss = dict() loss_perceptual, _ = self.perceptual_loss(generated["b"], batch["a"]) loss["perceptual"] = loss_perceptual * self.config.loss.perceptual.weight for phase in "b": pred_fake = self.discriminators[phase](generated[phase]) loss[f"gan_{phase}"] = 0 for sub_pred_fake in pred_fake: # last output is actual prediction loss[f"gan_{phase}"] += self.config.loss.gan.weight * self.gan_loss(sub_pred_fake[-1], True) if self.config.loss.fm.weight > 0 and phase == "b": pred_real = self.discriminators[phase](batch[phase]) loss_fm = 0 num_scale_discriminator = len(pred_fake) for i in range(num_scale_discriminator): # last output is the final prediction, so we exclude it num_intermediate_outputs = len(pred_fake[i]) - 1 for j in range(num_intermediate_outputs): loss_fm += self.fm_loss(pred_fake[i][j], pred_real[i][j].detach()) / num_scale_discriminator loss[f"fm_{phase}"] = self.config.loss.fm.weight * loss_fm return loss def criterion_discriminators(self, batch, generated) -> dict: loss = dict() for phase in self.discriminators.keys(): pred_real = self.discriminators[phase](batch[phase]) pred_fake = self.discriminators[phase](generated[phase].detach()) loss[f"gan_{phase}"] = 0 for i in range(len(pred_fake)): loss[f"gan_{phase}"] += (self.gan_loss(pred_fake[i][-1], False, is_discriminator=True) + self.gan_loss(pred_real[i][-1], True, is_discriminator=True)) / 2 return loss def intermediate_images(self, batch, generated) -> dict: """ returned dict must be like: {"a": [img1, img2, ...], "b": [img3, img4, ...]} :param batch: :param generated: dict of images :return: dict like: {"a": [img1, img2, ...], "b": [img3, img4, ...]} """ return dict( b=[batch["a"].detach(), batch["b"].detach(), generated["b"].detach()] ) class TSITTestEngineKernel(TestEngineKernel): def __init__(self, config): super().__init__(config) def build_generators(self) -> dict: generators = dict( main=build_model(self.config.model.generator) ) return generators def to_load(self): return {f"generator_{k}": self.generators[k] for k in self.generators} def inference(self, batch): with torch.no_grad(): fake = self.generators["main"](content_img=batch["a"][0], style_img=batch["b"][0]) return {"a": fake.detach()} def run(task, config, _): if task == "train": kernel = TSITEngineKernel(config) run_kernel(task, config, kernel) elif task == "test": kernel = TSITTestEngineKernel(config) run_kernel(task, config, kernel) else: raise NotImplemented