from itertools import chain import ignite.distributed as idist import torch from engine.base.i2i import EngineKernel, run_kernel from engine.util.build import build_model from engine.util.container import GANImageBuffer, LossContainer from engine.util.loss import pixel_loss, gan_loss, feature_match_loss from loss.I2I.edge_loss import EdgeLoss from loss.I2I.minimal_geometry_distortion_constraint_loss import MGCLoss from model.weight_init import generation_init_weights class CycleGANEngineKernel(EngineKernel): def __init__(self, config): super().__init__(config) self.gan_loss = gan_loss(config.loss.gan) self.cycle_loss = LossContainer(config.loss.cycle.weight, pixel_loss(config.loss.cycle.level)) self.id_loss = LossContainer(config.loss.id.weight, pixel_loss(config.loss.id.level)) self.mgc_loss = LossContainer(config.loss.mgc.weight, MGCLoss("opposite")) self.fm_loss = LossContainer(config.loss.fm.weight, feature_match_loss(1, "same")) self.edge_loss = LossContainer(config.loss.edge.weight, EdgeLoss( "HED", hed_pretrained_model_path=config.loss.edge.hed_pretrained_model_path).to(idist.device())) self.image_buffers = {k: GANImageBuffer(config.data.train.buffer_size or 50) for k in self.discriminators.keys()} def build_models(self) -> (dict, dict): generators = dict( a2b=build_model(self.config.model.generator), b2a=build_model(self.config.model.generator) ) discriminators = dict( a=build_model(self.config.model.discriminator), b=build_model(self.config.model.discriminator) ) self.logger.debug(discriminators["a"]) self.logger.debug(generators["a2b"]) for m in chain(generators.values(), discriminators.values()): generation_init_weights(m) return generators, discriminators def setup_after_g(self): for discriminator in self.discriminators.values(): discriminator.requires_grad_(True) def setup_before_g(self): for discriminator in self.discriminators.values(): discriminator.requires_grad_(False) def forward(self, batch, inference=False) -> dict: images = dict() with torch.set_grad_enabled(not inference): images["a2b"] = self.generators["a2b"](batch["a"]) images["b2a"] = self.generators["b2a"](batch["b"]) images["a2b2a"] = self.generators["b2a"](images["a2b"]) images["b2a2b"] = self.generators["a2b"](images["b2a"]) if self.id_loss.weight > 0: images["a2a"] = self.generators["b2a"](batch["a"]) images["b2b"] = self.generators["a2b"](batch["b"]) return images def criterion_generators(self, batch, generated) -> dict: loss = dict() for ph in "ab": loss[f"cycle_{ph}"] = self.cycle_loss(generated["a2b2a" if ph == "a" else "b2a2b"], batch[ph]) loss[f"id_{ph}"] = self.id_loss(generated[f"{ph}2{ph}"], batch[ph]) loss[f"mgc_{ph}"] = self.mgc_loss(generated["a2b" if ph == "a" else "b2a"], batch[ph]) prediction_fake = self.discriminators[ph](generated["a2b" if ph == "b" else "b2a"]) loss[f"gan_{ph}"] = self.config.loss.gan.weight * self.gan_loss(prediction_fake, True) if self.fm_loss.weight > 0: prediction_real = self.discriminators[ph](batch[ph]) loss[f"feature_match_{ph}"] = self.fm_loss(prediction_fake, prediction_real) loss[f"edge_{ph}"] = self.edge_loss(generated["a2b" if ph == "a" else "b2a"], batch[ph], gt_is_edge=False) return loss def criterion_discriminators(self, batch, generated) -> dict: loss = dict() for phase in "ab": generated_image = self.image_buffers[phase].query(generated["b2a" if phase == "a" else "a2b"].detach()) loss[f"gan_{phase}"] = (self.gan_loss(self.discriminators[phase](generated_image), False, is_discriminator=True) + self.gan_loss(self.discriminators[phase](batch[phase]), True, is_discriminator=True)) / 2 return loss def intermediate_images(self, batch, generated) -> dict: """ returned dict must be like: {"a": [img1, img2, ...], "b": [img3, img4, ...]} :param batch: :param generated: dict of images :return: dict like: {"a": [img1, img2, ...], "b": [img3, img4, ...]} """ return dict( a=[batch["a"].detach(), generated["a2b"].detach(), generated["a2b2a"].detach()], b=[batch["b"].detach(), generated["b2a"].detach(), generated["b2a2b"].detach()], ) def run(task, config, _): kernel = CycleGANEngineKernel(config) run_kernel(task, config, kernel)