raycv/engine/CyCleGAN.py
2020-09-06 10:34:52 +08:00

102 lines
4.2 KiB
Python

from itertools import chain
import ignite.distributed as idist
import torch
import torch.nn as nn
from omegaconf import OmegaConf
from engine.base.i2i import EngineKernel, run_kernel
from engine.util.build import build_model
from loss.gan import GANLoss
from model.GAN.base import GANImageBuffer
from model.weight_init import generation_init_weights
class TAFGEngineKernel(EngineKernel):
def __init__(self, config):
super().__init__(config)
gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
gan_loss_cfg.pop("weight")
self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
self.cycle_loss = nn.L1Loss() if config.loss.cycle.level == 1 else nn.MSELoss()
self.id_loss = nn.L1Loss() if config.loss.id.level == 1 else nn.MSELoss()
self.image_buffers = {k: GANImageBuffer(config.data.train.buffer_size or 50) for k in
self.discriminators.keys()}
def build_models(self) -> (dict, dict):
generators = dict(
a2b=build_model(self.config.model.generator),
b2a=build_model(self.config.model.generator)
)
discriminators = dict(
a=build_model(self.config.model.discriminator),
b=build_model(self.config.model.discriminator)
)
self.logger.debug(discriminators["a"])
self.logger.debug(generators["a2b"])
for m in chain(generators.values(), discriminators.values()):
generation_init_weights(m)
return generators, discriminators
def setup_after_g(self):
for discriminator in self.discriminators.values():
discriminator.requires_grad_(True)
def setup_before_g(self):
for discriminator in self.discriminators.values():
discriminator.requires_grad_(False)
def forward(self, batch, inference=False) -> dict:
images = dict()
with torch.set_grad_enabled(not inference):
images["a2b"] = self.generators["a2b"](batch["a"])
images["b2a"] = self.generators["b2a"](batch["b"])
images["a2b2a"] = self.generators["b2a"](images["a2b"])
images["b2a2b"] = self.generators["a2b"](images["b2a"])
if self.config.loss.id.weight > 0:
images["a2a"] = self.generators["b2a"](batch["a"])
images["b2b"] = self.generators["a2b"](batch["b"])
return images
def criterion_generators(self, batch, generated) -> dict:
loss = dict()
for phase in ["a2b", "b2a"]:
loss[f"cycle_{phase[0]}"] = self.config.loss.cycle.weight * self.cycle_loss(
generated[f"{phase}2{phase[0]}"], batch[phase[0]])
loss[f"gan_{phase}"] = self.config.loss.gan.weight * self.gan_loss(
self.discriminators[phase[-1]](generated[phase]), True)
if self.config.loss.id.weight > 0:
loss[f"id_{phase[0]}"] = self.config.loss.id.weight * self.id_loss(
generated[f"{phase[0]}2{phase[0]}"], batch[phase[0]])
return loss
def criterion_discriminators(self, batch, generated) -> dict:
loss = dict()
for phase in "ab":
generated_image = self.image_buffers[phase].query(generated["b2a" if phase == "a" else "a2b"].detach())
loss[f"gan_{phase}"] = (self.gan_loss(self.discriminators[phase](generated_image), False,
is_discriminator=True) +
self.gan_loss(self.discriminators[phase](batch[phase]), True,
is_discriminator=True)) / 2
return loss
def intermediate_images(self, batch, generated) -> dict:
"""
returned dict must be like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
:param batch:
:param generated: dict of images
:return: dict like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
"""
return dict(
a=[batch["a"].detach(), generated["a2b"].detach(), generated["a2b2a"].detach()],
b=[batch["b"].detach(), generated["b2a"].detach(), generated["b2a2b"].detach()],
)
def run(task, config, _):
kernel = TAFGEngineKernel(config)
run_kernel(task, config, kernel)