raycv/engine/GauGAN.py
2020-10-23 16:14:37 +08:00

87 lines
3.4 KiB
Python

from itertools import chain
import torch
from engine.base.i2i import EngineKernel, run_kernel
from engine.util.build import build_model
from engine.util.container import GANImageBuffer, LossContainer
from engine.util.loss import gan_loss, feature_match_loss, perceptual_loss
from loss.I2I.minimal_geometry_distortion_constraint_loss import MGCLoss
from model.weight_init import generation_init_weights
class GauGANEngineKernel(EngineKernel):
def __init__(self, config):
super().__init__(config)
self.gan_loss = gan_loss(config.loss.gan)
self.mgc_loss = LossContainer(config.loss.mgc.weight, MGCLoss("opposite"))
self.fm_loss = LossContainer(config.loss.fm.weight, feature_match_loss(1, "exponential_decline"))
self.perceptual_loss = LossContainer(config.loss.perceptual.weight, perceptual_loss(config.loss.perceptual))
self.image_buffers = {k: GANImageBuffer(config.data.train.buffer_size or 50) for k in
self.discriminators.keys()}
def build_models(self) -> (dict, dict):
generators = dict(
main=build_model(self.config.model.generator)
)
discriminators = dict(
b=build_model(self.config.model.discriminator)
)
self.logger.debug(discriminators["b"])
self.logger.debug(generators["main"])
for m in chain(generators.values(), discriminators.values()):
generation_init_weights(m)
return generators, discriminators
def setup_after_g(self):
for discriminator in self.discriminators.values():
discriminator.requires_grad_(True)
def setup_before_g(self):
for discriminator in self.discriminators.values():
discriminator.requires_grad_(False)
def forward(self, batch, inference=False) -> dict:
images = dict()
with torch.set_grad_enabled(not inference):
images["a2b"] = self.generators["main"](batch["a"])
return images
def criterion_generators(self, batch, generated) -> dict:
loss = dict()
prediction_fake = self.discriminators["b"](generated["a2b"])
loss["gan"] = self.config.loss.gan.weight * self.gan_loss(prediction_fake, True)
loss["mgc"] = self.mgc_loss(generated["a2b"], batch["a"])
loss["perceptual"] = self.perceptual_loss(generated["a2b"], batch["a"])
if self.fm_loss.weight > 0:
prediction_real = self.discriminators["b"](batch["b"])
loss["feature_match"] = self.fm_loss(prediction_fake, prediction_real)
return loss
def criterion_discriminators(self, batch, generated) -> dict:
loss = dict()
generated_image = self.image_buffers["b"].query(generated["a2b"].detach())
loss["b"] = (self.gan_loss(self.discriminators["b"](generated_image), False, is_discriminator=True) +
self.gan_loss(self.discriminators["b"](batch["b"]), True, is_discriminator=True)) / 2
return loss
def intermediate_images(self, batch, generated) -> dict:
"""
returned dict must be like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
:param batch:
:param generated: dict of images
:return: dict like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
"""
return dict(
a=[batch["a"].detach(), generated["a2b"].detach()],
)
def run(task, config, _):
kernel = GauGANEngineKernel(config)
run_kernel(task, config, kernel)