raycv/engine/TAFG.py
2020-09-01 17:56:18 +08:00

134 lines
5.7 KiB
Python

from itertools import chain
from math import ceil
from omegaconf import read_write, OmegaConf
import torch
import torch.nn as nn
import torch.nn.functional as F
import ignite.distributed as idist
import data
from engine.base.i2i import get_trainer, EngineKernel, build_model
from model.weight_init import generation_init_weights
from loss.I2I.perceptual_loss import PerceptualLoss
from loss.gan import GANLoss
class TAFGEngineKernel(EngineKernel):
def __init__(self, config, logger):
super().__init__(config, logger)
perceptual_loss_cfg = OmegaConf.to_container(config.loss.perceptual)
perceptual_loss_cfg.pop("weight")
self.perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device())
gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
gan_loss_cfg.pop("weight")
self.gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
self.fm_loss = nn.L1Loss() if config.loss.fm.level == 1 else nn.MSELoss()
self.recon_loss = nn.L1Loss() if config.loss.recon.level == 1 else nn.MSELoss()
def build_models(self) -> (dict, dict):
generators = dict(
main=build_model(self.config.model.generator)
)
discriminators = dict(
a=build_model(self.config.model.discriminator),
b=build_model(self.config.model.discriminator)
)
self.logger.debug(discriminators["a"])
self.logger.debug(generators["main"])
for m in chain(generators.values(), discriminators.values()):
generation_init_weights(m)
return generators, discriminators
def setup_before_d(self):
for discriminator in self.discriminators.values():
discriminator.requires_grad_(True)
def setup_before_g(self):
for discriminator in self.discriminators.values():
discriminator.requires_grad_(False)
def forward(self, batch, inference=False) -> dict:
generator = self.generators["main"]
with torch.set_grad_enabled(not inference):
fake = dict(
a=generator(content_img=batch["edge_a"], style_img=batch["a"], which_decoder="a"),
b=generator(content_img=batch["edge_a"], style_img=batch["b"], which_decoder="b"),
)
return fake
def criterion_generators(self, batch, generated) -> dict:
loss = dict()
loss["perceptual"], _, = self.perceptual_loss(generated["b"], batch["b"]) * self.config.loss.perceptual.weight
for phase in "ab":
pred_fake = self.discriminators[phase](generated[phase])
for i, sub_pred_fake in enumerate(pred_fake):
# last output is actual prediction
loss[f"gan_{phase}_sub_{i}"] = self.gan_loss(sub_pred_fake[-1], True)
if self.config.loss.fm.weight > 0 and phase == "b":
pred_real = self.discriminators[phase](batch[phase])
loss_fm = 0
num_scale_discriminator = len(pred_fake)
for i in range(num_scale_discriminator):
# last output is the final prediction, so we exclude it
num_intermediate_outputs = len(pred_fake[i]) - 1
for j in range(num_intermediate_outputs):
loss_fm += self.fm_loss(pred_fake[i][j], pred_real[i][j].detach()) / num_scale_discriminator
loss[f"fm_{phase}"] = self.config.loss.fm.weight * loss_fm
loss["recon"] = self.recon_loss(generated["a"], batch["a"]) * self.config.loss.recon.weight
return loss
def criterion_discriminators(self, batch, generated) -> dict:
loss = dict()
for phase in self.discriminators.keys():
pred_real = self.discriminators[phase](batch[phase])
pred_fake = self.discriminators[phase](generated[phase].detach())
loss[f"gan_{phase}"] = 0
for i in range(len(pred_fake)):
loss[f"gan_{phase}"] += (self.gan_loss(pred_fake[i][-1], False, is_discriminator=True)
+ self.gan_loss(pred_real[i][-1], True, is_discriminator=True)) / 2
return loss
def intermediate_images(self, batch, generated) -> dict:
"""
returned dict must be like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
:param batch:
:param generated: dict of images
:return: dict like: {"a": [img1, img2, ...], "b": [img3, img4, ...]}
"""
return dict(
a=[batch[f"edge_a"].expand(-1, 3, -1, -1).detach(), batch["a"].detach(), generated["a"].detach()],
b=[batch["b"].detach(), generated["b"].detach()]
)
def run(task, config, logger):
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
logger.info(f"start task {task}")
with read_write(config):
config.max_iteration = ceil(config.max_pairs / config.data.train.dataloader.batch_size)
if task == "train":
train_dataset = data.DATASET.build_with(config.data.train.dataset)
logger.info(f"train with dataset:\n{train_dataset}")
train_data_loader = idist.auto_dataloader(train_dataset, **config.data.train.dataloader)
trainer = get_trainer(config, TAFGEngineKernel(config, logger), len(train_data_loader))
if idist.get_rank() == 0:
test_dataset = data.DATASET.build_with(config.data.test.dataset)
trainer.state.test_dataset = test_dataset
try:
trainer.run(train_data_loader, max_epochs=ceil(config.max_iteration / len(train_data_loader)))
except Exception:
import traceback
print(traceback.format_exc())
else:
return NotImplemented(f"invalid task: {task}")