raycv/data/dataset.py

170 lines
6.6 KiB
Python

import os
import pickle
from collections import defaultdict
import torch
from torch.utils.data import Dataset
from torchvision.datasets import ImageFolder
from torchvision.datasets.folder import has_file_allowed_extension, IMG_EXTENSIONS, default_loader
import lmdb
from tqdm import tqdm
from .transform import transform_pipeline
from .registry import DATASET
def default_transform_way(transform, sample):
return [transform(sample[0]), *sample[1:]]
class LMDBDataset(Dataset):
def __init__(self, lmdb_path, pipeline=None, transform_way=default_transform_way, map_size=2 ** 40, readonly=True,
**lmdb_kwargs):
self.path = lmdb_path
self.db = lmdb.open(lmdb_path, subdir=os.path.isdir(lmdb_path), map_size=map_size, readonly=readonly,
lock=False, **lmdb_kwargs)
with self.db.begin(write=False) as txn:
self._len = pickle.loads(txn.get(b"$$len$$"))
self.done_pipeline = pickle.loads(txn.get(b"$$done_pipeline$$"))
if pipeline is None:
self.not_done_pipeline = []
else:
self.not_done_pipeline = self._remain_pipeline(pipeline)
self.transform = transform_pipeline(self.not_done_pipeline)
self.transform_way = transform_way
essential_attr = pickle.loads(txn.get(b"$$essential_attr$$"))
for ea in essential_attr:
setattr(self, ea, pickle.loads(txn.get(f"${ea}$".encode(encoding="utf-8"))))
def _remain_pipeline(self, pipeline):
for i, dp in enumerate(self.done_pipeline):
if pipeline[i] != dp:
raise ValueError(
f"pipeline {self.done_pipeline} saved in this lmdb database is not match with pipeline:{pipeline}")
return pipeline[len(self.done_pipeline):]
def __repr__(self):
return f"LMDBDataset: {self.path}\nlength: {len(self)}\n{self.transform}"
def __len__(self):
return self._len
def __getitem__(self, idx):
with self.db.begin(write=False) as txn:
sample = pickle.loads(txn.get("{}".format(idx).encode()))
sample = self.transform_way(self.transform, sample)
return sample
@staticmethod
def lmdbify(dataset, done_pipeline, lmdb_path):
env = lmdb.open(lmdb_path, map_size=2 ** 40, subdir=os.path.isdir(lmdb_path))
with env.begin(write=True) as txn:
for i in tqdm(range(len(dataset)), ncols=0):
txn.put("{}".format(i).encode(), pickle.dumps(dataset[i]))
txn.put(b"$$len$$", pickle.dumps(len(dataset)))
txn.put(b"$$done_pipeline$$", pickle.dumps(done_pipeline))
essential_attr = getattr(dataset, "essential_attr", list())
txn.put(b"$$essential_attr$$", pickle.dumps(essential_attr))
for ea in essential_attr:
txn.put(f"${ea}$".encode(encoding="utf-8"), pickle.dumps(getattr(dataset, ea)))
@DATASET.register_module()
class ImprovedImageFolder(ImageFolder):
def __init__(self, root, pipeline):
super().__init__(root, transform_pipeline(pipeline), loader=lambda x: x)
self.classes_list = defaultdict(list)
self.essential_attr = ["classes_list"]
for i in range(len(self)):
self.classes_list[self.samples[i][-1]].append(i)
assert len(self.classes_list) == len(self.classes)
class EpisodicDataset(Dataset):
def __init__(self, origin_dataset, num_class, num_query, num_support, num_episodes):
self.origin = origin_dataset
self.num_class = num_class
assert self.num_class < len(self.origin.classes_list)
self.num_query = num_query # K
self.num_support = num_support # K
self.num_episodes = num_episodes
def _fetch_list_data(self, id_list):
return [self.origin[i][0] for i in id_list]
def __len__(self):
return self.num_episodes
def __getitem__(self, _):
random_classes = torch.randperm(len(self.origin.classes_list))[:self.num_class].tolist()
support_set_list = []
query_set_list = []
target_list = []
for tag, c in enumerate(random_classes):
image_list = self.origin.classes_list[c]
if len(image_list) >= self.num_query + self.num_support:
# have enough images belong to this class
idx_list = torch.randperm(len(image_list))[:self.num_query + self.num_support].tolist()
else:
idx_list = torch.randint(high=len(image_list), size=(self.num_query + self.num_support,)).tolist()
support = self._fetch_list_data(map(image_list.__getitem__, idx_list[:self.num_support]))
query = self._fetch_list_data(map(image_list.__getitem__, idx_list[self.num_support:]))
support_set_list.extend(support)
query_set_list.extend(query)
target_list.extend([tag] * self.num_query)
return {
"support": torch.stack(support_set_list),
"query": torch.stack(query_set_list),
"target": torch.tensor(target_list)
}
def __repr__(self):
return f"<EpisodicDataset NE{self.num_episodes} NC{self.num_class} NS{self.num_support} NQ{self.num_query}>"
@DATASET.register_module()
class SingleFolderDataset(Dataset):
def __init__(self, root, pipeline):
assert os.path.isdir(root)
self.root = root
samples = []
for r, _, fns in sorted(os.walk(self.root, followlinks=True)):
for fn in sorted(fns):
path = os.path.join(r, fn)
if has_file_allowed_extension(path, IMG_EXTENSIONS):
samples.append(path)
self.samples = samples
self.pipeline = transform_pipeline(pipeline)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
return self.pipeline(self.samples[idx])
def __repr__(self):
return f"<SingleFolderDataset root={self.root} len={len(self)}>"
@DATASET.register_module()
class GenerationUnpairedDataset(Dataset):
def __init__(self, root_a, root_b, random_pair, pipeline):
self.A = SingleFolderDataset(root_a, pipeline)
self.B = SingleFolderDataset(root_b, pipeline)
self.random_pair = random_pair
def __getitem__(self, idx):
a_idx = idx % len(self.A)
b_idx = idx % len(self.B) if not self.random_pair else torch.randint(len(self.B), (1,)).item()
return dict(a=self.A[a_idx], b=self.B[b_idx])
def __len__(self):
return max(len(self.A), len(self.B))
def __repr__(self):
return f"<GenerationUnpairedDataset:\n\tA: {self.A}\n\tB: {self.B}>\nPipeline:\n{self.A.pipeline}"