raycv/model/normalization.py
2020-08-29 10:35:54 +08:00

77 lines
2.8 KiB
Python

import torch.nn as nn
import functools
import torch
def select_norm_layer(norm_type):
if norm_type == "BN":
return functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == "IN":
return functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
elif norm_type == "LN":
return functools.partial(LayerNorm2d, affine=True)
elif norm_type == "NONE":
return lambda num_features: nn.Identity()
elif norm_type == "AdaIN":
return functools.partial(AdaptiveInstanceNorm2d, affine=False, track_running_stats=False)
else:
raise NotImplemented(f'normalization layer {norm_type} is not found')
class LayerNorm2d(nn.Module):
def __init__(self, num_features, eps: float = 1e-5, affine: bool = True):
super().__init__()
self.num_features = num_features
self.eps = eps
self.affine = affine
if self.affine:
self.channel_gamma = nn.Parameter(torch.Tensor(1, num_features, 1, 1))
self.channel_beta = nn.Parameter(torch.Tensor(1, num_features, 1, 1))
self.reset_parameters()
def reset_parameters(self):
if self.affine:
nn.init.uniform_(self.channel_gamma)
nn.init.zeros_(self.channel_beta)
def forward(self, x):
ln_mean, ln_var = torch.mean(x, dim=[1, 2, 3], keepdim=True), torch.var(x, dim=[1, 2, 3], keepdim=True)
x = (x - ln_mean) / torch.sqrt(ln_var + self.eps)
print(x.size())
if self.affine:
return self.channel_gamma * x + self.channel_beta
return x
def __repr__(self):
return f"{self.__class__.__name__}(num_features={self.num_features}, affine={self.affine})"
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features: int, eps: float = 1e-5, momentum: float = 0.1,
affine: bool = False, track_running_stats: bool = False):
super().__init__()
self.num_features = num_features
self.affine = affine
self.track_running_stats = track_running_stats
self.norm = nn.InstanceNorm2d(num_features, eps, momentum, affine, track_running_stats)
self.gamma = None
self.beta = None
self.have_set_style = False
def set_style(self, style):
style = style.view(*style.size(), 1, 1)
self.gamma, self.beta = style.chunk(2, 1)
self.have_set_style = True
def forward(self, x):
assert self.have_set_style
x = self.norm(x)
x = self.gamma * x + self.beta
self.have_set_style = False
return x
def __repr__(self):
return f"{self.__class__.__name__}(num_features={self.num_features}, " \
f"affine={self.affine}, track_running_stats={self.track_running_stats})"