87 lines
3.2 KiB
Python
87 lines
3.2 KiB
Python
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
import ignite.distributed as idist
|
|
from ignite.engine import Events
|
|
from ignite.handlers import Checkpoint, DiskSaver, TerminateOnNan
|
|
from ignite.contrib.handlers import BasicTimeProfiler
|
|
|
|
|
|
def setup_common_handlers(
|
|
trainer,
|
|
output_dir=None,
|
|
stop_on_nan=True,
|
|
use_profiler=True,
|
|
print_interval_event=None,
|
|
metrics_to_print=None,
|
|
to_save=None,
|
|
resume_from=None,
|
|
save_interval_event=None,
|
|
**checkpoint_kwargs
|
|
):
|
|
"""
|
|
Helper method to setup trainer with common handlers.
|
|
1. TerminateOnNan
|
|
2. BasicTimeProfiler
|
|
3. Print
|
|
4. Checkpoint
|
|
:param trainer: trainer engine. Output of trainer's `update_function` should be a dictionary
|
|
or sequence or a single tensor.
|
|
:param output_dir: output path to indicate where `to_save` objects are stored. Argument is mutually
|
|
:param stop_on_nan: if True, :class:`~ignite.handlers.TerminateOnNan` handler is added to the trainer.
|
|
:param use_profiler:
|
|
:param print_interval_event:
|
|
:param metrics_to_print:
|
|
:param to_save:
|
|
:param resume_from:
|
|
:param save_interval_event:
|
|
:param checkpoint_kwargs:
|
|
:return:
|
|
"""
|
|
if stop_on_nan:
|
|
trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())
|
|
|
|
if use_profiler:
|
|
# Create an object of the profiler and attach an engine to it
|
|
profiler = BasicTimeProfiler()
|
|
profiler.attach(trainer)
|
|
|
|
@trainer.on(Events.EPOCH_COMPLETED(once=1))
|
|
@idist.one_rank_only()
|
|
def log_intermediate_results():
|
|
profiler.print_results(profiler.get_results())
|
|
|
|
@trainer.on(Events.COMPLETED)
|
|
@idist.one_rank_only()
|
|
def _():
|
|
profiler.print_results(profiler.get_results())
|
|
# profiler.write_results(f"{output_dir}/time_profiling.csv")
|
|
|
|
if metrics_to_print is not None:
|
|
if print_interval_event is None:
|
|
raise ValueError(
|
|
"If metrics_to_print argument is provided then print_interval_event arguments should be also defined"
|
|
)
|
|
|
|
@trainer.on(print_interval_event)
|
|
def print_interval(engine):
|
|
print_str = f"epoch:{engine.state.epoch} iter:{engine.state.iteration}\t"
|
|
for m in metrics_to_print:
|
|
print_str += f"{m}={engine.state.metrics[m]:.3f} "
|
|
engine.logger.info(print_str)
|
|
|
|
if to_save is not None:
|
|
if resume_from is not None:
|
|
@trainer.on(Events.STARTED)
|
|
def resume(engine):
|
|
checkpoint_path = Path(resume_from)
|
|
if not checkpoint_path.exists():
|
|
raise FileNotFoundError(f"Checkpoint '{checkpoint_path}' is not found")
|
|
ckp = torch.load(checkpoint_path.as_posix(), map_location="cpu")
|
|
Checkpoint.load_objects(to_load=to_save, checkpoint=ckp)
|
|
engine.logger.info(f"resume from a checkpoint {checkpoint_path}")
|
|
if save_interval_event is not None:
|
|
checkpoint_handler = Checkpoint(to_save, DiskSaver(dirname=output_dir), **checkpoint_kwargs)
|
|
trainer.add_event_handler(save_interval_event, checkpoint_handler)
|