raycv/util/handler.py

87 lines
3.2 KiB
Python

from pathlib import Path
import torch
import ignite.distributed as idist
from ignite.engine import Events
from ignite.handlers import Checkpoint, DiskSaver, TerminateOnNan
from ignite.contrib.handlers import BasicTimeProfiler
def setup_common_handlers(
trainer,
output_dir=None,
stop_on_nan=True,
use_profiler=True,
print_interval_event=None,
metrics_to_print=None,
to_save=None,
resume_from=None,
save_interval_event=None,
**checkpoint_kwargs
):
"""
Helper method to setup trainer with common handlers.
1. TerminateOnNan
2. BasicTimeProfiler
3. Print
4. Checkpoint
:param trainer: trainer engine. Output of trainer's `update_function` should be a dictionary
or sequence or a single tensor.
:param output_dir: output path to indicate where `to_save` objects are stored. Argument is mutually
:param stop_on_nan: if True, :class:`~ignite.handlers.TerminateOnNan` handler is added to the trainer.
:param use_profiler:
:param print_interval_event:
:param metrics_to_print:
:param to_save:
:param resume_from:
:param save_interval_event:
:param checkpoint_kwargs:
:return:
"""
if stop_on_nan:
trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())
if use_profiler:
# Create an object of the profiler and attach an engine to it
profiler = BasicTimeProfiler()
profiler.attach(trainer)
@trainer.on(Events.EPOCH_COMPLETED(once=1))
@idist.one_rank_only()
def log_intermediate_results():
profiler.print_results(profiler.get_results())
@trainer.on(Events.COMPLETED)
@idist.one_rank_only()
def _():
profiler.print_results(profiler.get_results())
# profiler.write_results(f"{output_dir}/time_profiling.csv")
if metrics_to_print is not None:
if print_interval_event is None:
raise ValueError(
"If metrics_to_print argument is provided then print_interval_event arguments should be also defined"
)
@trainer.on(print_interval_event)
def print_interval(engine):
print_str = f"epoch:{engine.state.epoch} iter:{engine.state.iteration}\t"
for m in metrics_to_print:
print_str += f"{m}={engine.state.metrics[m]:.3f} "
engine.logger.info(print_str)
if to_save is not None:
if resume_from is not None:
@trainer.on(Events.STARTED)
def resume(engine):
checkpoint_path = Path(resume_from)
if not checkpoint_path.exists():
raise FileNotFoundError(f"Checkpoint '{checkpoint_path}' is not found")
ckp = torch.load(checkpoint_path.as_posix(), map_location="cpu")
Checkpoint.load_objects(to_load=to_save, checkpoint=ckp)
engine.logger.info(f"resume from a checkpoint {checkpoint_path}")
if save_interval_event is not None:
checkpoint_handler = Checkpoint(to_save, DiskSaver(dirname=output_dir), **checkpoint_kwargs)
trainer.add_event_handler(save_interval_event, checkpoint_handler)