raycv/configs/synthesizers/UGATIT-VoxCeleb2Anime.yml
2020-08-28 08:15:29 +08:00

130 lines
2.6 KiB
YAML

name: VoxCeleb2Anime
engine: UGATIT
result_dir: ./result
max_pairs: 1000000
distributed:
model:
# broadcast_buffers: False
misc:
random_seed: 324
checkpoint:
epoch_interval: 1 # one checkpoint every 1 epoch
n_saved: 2
interval:
print_per_iteration: 10 # print once per 10 iteration
tensorboard:
scalar: 10
image: 500
model:
generator:
_type: UGATIT-Generator
in_channels: 3
out_channels: 3
base_channels: 64
num_blocks: 4
img_size: 128
light: True
local_discriminator:
_type: UGATIT-Discriminator
in_channels: 3
base_channels: 64
num_blocks: 5
global_discriminator:
_type: UGATIT-Discriminator
in_channels: 3
base_channels: 64
num_blocks: 7
loss:
gan:
loss_type: lsgan
weight: 1.0
real_label_val: 1.0
fake_label_val: 0.0
cycle:
level: 1
weight: 10.0
id:
level: 1
weight: 10.0
cam:
weight: 1000
optimizers:
generator:
_type: Adam
lr: 0.0001
betas: [ 0.5, 0.999 ]
weight_decay: 0.0001
discriminator:
_type: Adam
lr: 1e-4
betas: [ 0.5, 0.999 ]
weight_decay: 0.0001
data:
train:
scheduler:
start_proportion: 0.5
target_lr: 0
buffer_size: 50
dataloader:
batch_size: 20
shuffle: True
num_workers: 2
pin_memory: True
drop_last: True
dataset:
_type: GenerationUnpairedDataset
root_a: "/data/i2i/VoxCeleb2Anime/trainA"
root_b: "/data/i2i/VoxCeleb2Anime/trainB"
random_pair: True
pipeline:
- Load
- Resize:
size: [ 135, 135 ]
- RandomCrop:
size: [ 128, 128 ]
- RandomHorizontalFlip
- ToTensor
- Normalize:
mean: [ 0.5, 0.5, 0.5 ]
std: [ 0.5, 0.5, 0.5 ]
test:
dataloader:
batch_size: 8
shuffle: False
num_workers: 1
pin_memory: False
drop_last: False
dataset:
_type: GenerationUnpairedDataset
root_a: "/data/i2i/VoxCeleb2Anime/testA"
root_b: "/data/i2i/VoxCeleb2Anime/testB"
random_pair: False
pipeline:
- Load
- Resize:
size: [ 128, 128 ]
- ToTensor
- Normalize:
mean: [ 0.5, 0.5, 0.5 ]
std: [ 0.5, 0.5, 0.5 ]
video_dataset:
_type: SingleFolderDataset
root: "/data/i2i/VoxCeleb2Anime/test_video_frames/"
with_path: True
pipeline:
- Load
- Resize:
size: [ 128, 128 ]
- ToTensor
- Normalize:
mean: [ 0.5, 0.5, 0.5 ]
std: [ 0.5, 0.5, 0.5 ]