242 lines
9.7 KiB
Python
242 lines
9.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from .base import ResidualBlock
|
|
from model.registry import MODEL
|
|
from torchvision.models import vgg19
|
|
from model.normalization import select_norm_layer
|
|
|
|
|
|
class VGG19StyleEncoder(nn.Module):
|
|
def __init__(self, in_channels, base_channels=64, style_dim=512, padding_mode='reflect', norm_type="NONE",
|
|
vgg19_layers=(0, 5, 10, 19)):
|
|
super().__init__()
|
|
self.vgg19_layers = vgg19_layers
|
|
self.vgg19 = vgg19(pretrained=True).features[:vgg19_layers[-1] + 1]
|
|
self.vgg19.requires_grad_(False)
|
|
|
|
norm_layer = select_norm_layer(norm_type)
|
|
|
|
self.conv0 = nn.Sequential(
|
|
nn.Conv2d(in_channels, base_channels, kernel_size=7, stride=1, padding=3, padding_mode=padding_mode,
|
|
bias=True),
|
|
norm_layer(base_channels),
|
|
nn.ReLU(True),
|
|
)
|
|
self.conv = nn.ModuleList([
|
|
nn.Sequential(
|
|
nn.Conv2d(base_channels * (2 ** i), base_channels * (2 ** i), kernel_size=4, stride=2, padding=1,
|
|
padding_mode=padding_mode, bias=True),
|
|
norm_layer(base_channels),
|
|
nn.ReLU(True),
|
|
) for i in range(1, 4)
|
|
])
|
|
self.pool = nn.AdaptiveAvgPool2d(1)
|
|
self.conv1x1 = nn.Conv2d(base_channels * (2 ** 4), style_dim, kernel_size=1, stride=1, padding=0)
|
|
|
|
def fixed_style_features(self, x):
|
|
features = []
|
|
for i in range(len(self.vgg19)):
|
|
x = self.vgg19[i](x)
|
|
if i in self.vgg19_layers:
|
|
features.append(x)
|
|
return features
|
|
|
|
def forward(self, x):
|
|
fsf = self.fixed_style_features(x)
|
|
x = self.conv0(x)
|
|
for i, l in enumerate(self.conv):
|
|
x = l(torch.cat([x, fsf[i]], dim=1))
|
|
x = self.pool(torch.cat([x, fsf[-1]], dim=1))
|
|
x = self.conv1x1(x)
|
|
return x.view(x.size(0), -1)
|
|
|
|
|
|
class ContentEncoder(nn.Module):
|
|
def __init__(self, in_channels, base_channels=64, num_blocks=8, padding_mode='reflect', norm_type="IN"):
|
|
super().__init__()
|
|
norm_layer = select_norm_layer(norm_type)
|
|
|
|
self.start_conv = nn.Sequential(
|
|
nn.Conv2d(in_channels, base_channels, kernel_size=7, stride=1, padding_mode=padding_mode, padding=3,
|
|
bias=True),
|
|
norm_layer(num_features=base_channels),
|
|
nn.ReLU(inplace=True)
|
|
)
|
|
|
|
# down sampling
|
|
submodules = []
|
|
num_down_sampling = 2
|
|
for i in range(num_down_sampling):
|
|
multiple = 2 ** i
|
|
submodules += [
|
|
nn.Conv2d(in_channels=base_channels * multiple, out_channels=base_channels * multiple * 2,
|
|
kernel_size=4, stride=2, padding=1, bias=True),
|
|
norm_layer(num_features=base_channels * multiple * 2),
|
|
nn.ReLU(inplace=True)
|
|
]
|
|
self.encoder = nn.Sequential(*submodules)
|
|
res_block_channels = num_down_sampling ** 2 * base_channels
|
|
self.resnet = nn.Sequential(
|
|
*[ResidualBlock(res_block_channels, padding_mode, norm_type, use_bias=True) for _ in range(num_blocks)])
|
|
|
|
def forward(self, x):
|
|
x = self.start_conv(x)
|
|
x = self.encoder(x)
|
|
x = self.resnet(x)
|
|
return x
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(self, out_channels, base_channels=64, num_blocks=4, num_down_sampling=2, padding_mode='reflect',
|
|
norm_type="LN"):
|
|
super(Decoder, self).__init__()
|
|
norm_layer = select_norm_layer(norm_type)
|
|
use_bias = norm_type == "IN"
|
|
|
|
res_block_channels = (2 ** 2) * base_channels
|
|
|
|
self.resnet = nn.Sequential(
|
|
*[ResidualBlock(res_block_channels, padding_mode, norm_type, use_bias=True) for _ in range(num_blocks)])
|
|
|
|
# up sampling
|
|
submodules = []
|
|
for i in range(num_down_sampling):
|
|
multiple = 2 ** (num_down_sampling - i)
|
|
submodules += [
|
|
nn.Upsample(scale_factor=2),
|
|
nn.Conv2d(base_channels * multiple, base_channels * multiple // 2, kernel_size=5, stride=1,
|
|
padding=2, padding_mode=padding_mode, bias=use_bias),
|
|
norm_layer(num_features=base_channels * multiple // 2),
|
|
nn.ReLU(inplace=True),
|
|
]
|
|
self.decoder = nn.Sequential(*submodules)
|
|
self.end_conv = nn.Sequential(
|
|
nn.Conv2d(base_channels, out_channels, kernel_size=7, padding=3, padding_mode=padding_mode),
|
|
nn.Tanh()
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.resnet(x)
|
|
x = self.decoder(x)
|
|
x = self.end_conv(x)
|
|
return x
|
|
|
|
|
|
class Fusion(nn.Module):
|
|
def __init__(self, in_features, out_features, base_features, n_blocks, norm_type="NONE"):
|
|
super().__init__()
|
|
norm_layer = select_norm_layer(norm_type)
|
|
self.start_fc = nn.Sequential(
|
|
nn.Linear(in_features, base_features),
|
|
norm_layer(base_features),
|
|
nn.ReLU(True),
|
|
)
|
|
self.fcs = nn.Sequential(*[
|
|
nn.Sequential(
|
|
nn.Linear(base_features, base_features),
|
|
norm_layer(base_features),
|
|
nn.ReLU(True),
|
|
) for _ in range(n_blocks - 2)
|
|
])
|
|
self.end_fc = nn.Sequential(
|
|
nn.Linear(base_features, out_features),
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.start_fc(x)
|
|
x = self.fcs(x)
|
|
return self.end_fc(x)
|
|
|
|
|
|
class StyleGenerator(nn.Module):
|
|
def __init__(self, style_in_channels, style_dim=512, num_blocks=8, base_channels=64, padding_mode="reflect"):
|
|
super().__init__()
|
|
self.num_blocks = num_blocks
|
|
self.style_encoder = VGG19StyleEncoder(
|
|
style_in_channels, base_channels, style_dim=style_dim, padding_mode=padding_mode, norm_type="NONE")
|
|
self.fc = nn.Sequential(
|
|
nn.Linear(style_dim, style_dim),
|
|
nn.ReLU(True),
|
|
)
|
|
res_block_channels = 2 ** 2 * base_channels
|
|
self.fusion = Fusion(style_dim, num_blocks * 2 * res_block_channels * 2, base_features=256, n_blocks=3,
|
|
norm_type="NONE")
|
|
|
|
def forward(self, x):
|
|
styles = self.fusion(self.fc(self.style_encoder(x)))
|
|
return styles
|
|
|
|
|
|
@MODEL.register_module("TAFG-Generator")
|
|
class Generator(nn.Module):
|
|
def __init__(self, style_in_channels, content_in_channels=3, out_channels=3, style_dim=512, num_blocks=8,
|
|
base_channels=64, padding_mode="reflect"):
|
|
super(Generator, self).__init__()
|
|
self.num_blocks = num_blocks
|
|
self.style_encoders = nn.ModuleDict({
|
|
"a": StyleGenerator(style_in_channels, style_dim=style_dim, num_blocks=num_blocks,
|
|
base_channels=base_channels, padding_mode=padding_mode),
|
|
"b": StyleGenerator(style_in_channels, style_dim=style_dim, num_blocks=num_blocks,
|
|
base_channels=base_channels, padding_mode=padding_mode),
|
|
})
|
|
self.content_encoder = ContentEncoder(content_in_channels, base_channels, num_blocks=num_blocks,
|
|
padding_mode=padding_mode, norm_type="IN")
|
|
res_block_channels = 2 ** 2 * base_channels
|
|
self.adain_resnet_a = nn.ModuleList([
|
|
ResidualBlock(res_block_channels, padding_mode, "AdaIN", use_bias=True) for _ in range(num_blocks)
|
|
])
|
|
self.adain_resnet_b = nn.ModuleList([
|
|
ResidualBlock(res_block_channels, padding_mode, "AdaIN", use_bias=True) for _ in range(num_blocks)
|
|
])
|
|
|
|
self.decoders = nn.ModuleDict({
|
|
"a": Decoder(out_channels, base_channels, norm_type="LN", num_blocks=0, padding_mode=padding_mode),
|
|
"b": Decoder(out_channels, base_channels, norm_type="LN", num_blocks=0, padding_mode=padding_mode)
|
|
})
|
|
|
|
def forward(self, content_img, style_img, which_decoder: str = "a"):
|
|
x = self.content_encoder(content_img)
|
|
styles = self.style_encoders[which_decoder](style_img)
|
|
styles = torch.chunk(styles, self.num_blocks * 2, dim=1)
|
|
resnet = self.adain_resnet_a if which_decoder == "a" else self.adain_resnet_b
|
|
for i, ar in enumerate(resnet):
|
|
ar.norm1.set_style(styles[2 * i])
|
|
ar.norm2.set_style(styles[2 * i + 1])
|
|
x = ar(x)
|
|
return self.decoders[which_decoder](x)
|
|
|
|
|
|
@MODEL.register_module("TAFG-Discriminator")
|
|
class Discriminator(nn.Module):
|
|
def __init__(self, in_channels=3, base_channels=64, num_down_sampling=2, num_blocks=3, norm_type="IN",
|
|
padding_mode="reflect"):
|
|
super(Discriminator, self).__init__()
|
|
|
|
norm_layer = select_norm_layer(norm_type)
|
|
use_bias = norm_type == "IN"
|
|
|
|
sequence = [nn.Sequential(
|
|
nn.Conv2d(in_channels, base_channels, kernel_size=7, stride=1, padding_mode=padding_mode, padding=3,
|
|
bias=use_bias),
|
|
norm_layer(num_features=base_channels),
|
|
nn.ReLU(inplace=True)
|
|
)]
|
|
# stacked intermediate layers,
|
|
# gradually increasing the number of filters
|
|
multiple_now = 1
|
|
for n in range(1, num_down_sampling + 1):
|
|
multiple_prev = multiple_now
|
|
multiple_now = min(2 ** n, 4)
|
|
sequence += [
|
|
nn.Conv2d(base_channels * multiple_prev, base_channels * multiple_now, kernel_size=3,
|
|
padding=1, stride=2, bias=use_bias),
|
|
norm_layer(base_channels * multiple_now),
|
|
nn.LeakyReLU(0.2, inplace=True)
|
|
]
|
|
for _ in range(num_blocks):
|
|
sequence.append(ResidualBlock(base_channels * multiple_now, padding_mode, norm_type))
|
|
self.model = nn.Sequential(*sequence)
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|