raycv/engine/TAHG.py
2020-09-01 09:02:04 +08:00

246 lines
11 KiB
Python

from itertools import chain
from math import ceil
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import ignite.distributed as idist
from ignite.engine import Events, Engine
from ignite.metrics import RunningAverage
from ignite.utils import convert_tensor
from ignite.contrib.handlers.tensorboard_logger import OptimizerParamsHandler
from ignite.contrib.handlers.param_scheduler import PiecewiseLinear
from omegaconf import OmegaConf, read_write
import data
from loss.gan import GANLoss
from model.weight_init import generation_init_weights
from model.GAN.residual_generator import GANImageBuffer
from loss.I2I.edge_loss import EdgeLoss
from loss.I2I.perceptual_loss import PerceptualLoss
from util.image import make_2d_grid
from util.handler import setup_common_handlers, setup_tensorboard_handler
from util.build import build_model, build_optimizer
def build_lr_schedulers(optimizers, config):
g_milestones_values = [
(0, config.optimizers.generator.lr),
(int(config.data.train.scheduler.start_proportion * config.max_iteration), config.optimizers.generator.lr),
(config.max_iteration, config.data.train.scheduler.target_lr)
]
d_milestones_values = [
(0, config.optimizers.discriminator.lr),
(int(config.data.train.scheduler.start_proportion * config.max_iteration), config.optimizers.discriminator.lr),
(config.max_iteration, config.data.train.scheduler.target_lr)
]
return dict(
g=PiecewiseLinear(optimizers["g"], param_name="lr", milestones_values=g_milestones_values),
d=PiecewiseLinear(optimizers["d"], param_name="lr", milestones_values=d_milestones_values)
)
def get_trainer(config, logger, train_data_loader):
generator = build_model(config.model.generator, config.distributed.model)
discriminators = dict(
a=build_model(config.model.discriminator, config.distributed.model),
b=build_model(config.model.discriminator, config.distributed.model),
)
generation_init_weights(generator)
for m in discriminators.values():
generation_init_weights(m)
logger.debug(discriminators["a"])
logger.debug(generator)
optimizers = dict(
g=build_optimizer(generator.parameters(), config.optimizers.generator),
d=build_optimizer(chain(*[m.parameters() for m in discriminators.values()]), config.optimizers.discriminator),
)
logger.info(f"build optimizers:\n{optimizers}")
lr_schedulers = build_lr_schedulers(optimizers, config)
logger.info(f"build lr_schedulers:\n{lr_schedulers}")
gan_loss_cfg = OmegaConf.to_container(config.loss.gan)
gan_loss_cfg.pop("weight")
gan_loss = GANLoss(**gan_loss_cfg).to(idist.device())
edge_loss_cfg = OmegaConf.to_container(config.loss.edge)
edge_loss_cfg.pop("weight")
edge_loss = EdgeLoss(**edge_loss_cfg).to(idist.device())
perceptual_loss_cfg = OmegaConf.to_container(config.loss.perceptual)
perceptual_loss_cfg.pop("weight")
perceptual_loss = PerceptualLoss(**perceptual_loss_cfg).to(idist.device())
recon_loss = nn.L1Loss() if config.loss.recon.level == 1 else nn.MSELoss()
image_buffers = {k: GANImageBuffer(config.data.train.buffer_size or 50) for k in discriminators.keys()}
def _step(engine, batch):
batch = convert_tensor(batch, idist.device())
real = dict(a=batch["a"], b=batch["b"])
fake = dict(
a=generator(content_img=batch["edge_a"], style_img=real["a"], which_decoder="a"),
b=generator(content_img=batch["edge_a"], style_img=real["b"], which_decoder="b"),
)
rec_b = generator(content_img=batch["edge_b"], style_img=real["b"], which_decoder="b")
rec_bb = generator(content_img=batch["edge_b"], style_img=fake["b"], which_decoder="b")
optimizers["g"].zero_grad()
loss_g = dict()
for d in "ab":
discriminators[d].requires_grad_(False)
pred_fake = discriminators[d](fake[d])
loss_g[f"gan_{d}"] = config.loss.gan.weight * gan_loss(pred_fake, True)
_, t = perceptual_loss(fake[d], real[d])
loss_g[f"perceptual_{d}"] = config.loss.perceptual.weight * t
loss_g[f"edge_{d}"] = config.loss.edge.weight * edge_loss(fake[d], batch["edge_a"])
loss_g["recon_a"] = config.loss.recon.weight * recon_loss(fake["a"], real["a"])
loss_g["recon_b"] = config.loss.recon.weight * recon_loss(rec_b, real["b"])
loss_g["recon_bb"] = config.loss.recon.weight * recon_loss(rec_bb, real["b"])
sum(loss_g.values()).backward()
optimizers["g"].step()
for discriminator in discriminators.values():
discriminator.requires_grad_(True)
optimizers["d"].zero_grad()
loss_d = dict()
for k in discriminators.keys():
pred_real = discriminators[k](real[k])
pred_fake = discriminators[k](image_buffers[k].query(fake[k].detach()))
loss_d[f"gan_{k}"] = (gan_loss(pred_real, True, is_discriminator=True) +
gan_loss(pred_fake, False, is_discriminator=True)) / 2
sum(loss_d.values()).backward()
optimizers["d"].step()
generated_img = {f"real_{k}": real[k].detach() for k in real}
generated_img["rec_b"] = rec_b.detach()
generated_img["rec_bb"] = rec_b.detach()
generated_img.update({f"fake_{k}": fake[k].detach() for k in fake})
generated_img.update({f"edge_{k}": batch[f"edge_{k}"].expand(-1, 3, -1, -1).detach() for k in "ab"})
return {
"loss": {
"g": {ln: loss_g[ln].mean().item() for ln in loss_g},
"d": {ln: loss_d[ln].mean().item() for ln in loss_d},
},
"img": generated_img
}
trainer = Engine(_step)
trainer.logger = logger
for lr_shd in lr_schedulers.values():
trainer.add_event_handler(Events.ITERATION_COMPLETED, lr_shd)
RunningAverage(output_transform=lambda x: sum(x["loss"]["g"].values())).attach(trainer, "loss_g")
RunningAverage(output_transform=lambda x: sum(x["loss"]["d"].values())).attach(trainer, "loss_d")
to_save = dict(trainer=trainer)
to_save.update({f"lr_scheduler_{k}": lr_schedulers[k] for k in lr_schedulers})
to_save.update({f"optimizer_{k}": optimizers[k] for k in optimizers})
to_save.update({"generator": generator})
to_save.update({f"discriminator_{k}": discriminators[k] for k in discriminators})
setup_common_handlers(trainer, config, to_save=to_save, clear_cuda_cache=True, set_epoch_for_dist_sampler=True,
end_event=Events.ITERATION_COMPLETED(once=config.max_iteration))
def output_transform(output):
loss = dict()
for tl in output["loss"]:
if isinstance(output["loss"][tl], dict):
for l in output["loss"][tl]:
loss[f"{tl}_{l}"] = output["loss"][tl][l]
else:
loss[tl] = output["loss"][tl]
return loss
iter_per_epoch = len(train_data_loader)
tensorboard_handler = setup_tensorboard_handler(trainer, config, output_transform, iter_per_epoch)
if tensorboard_handler is not None:
tensorboard_handler.attach(
trainer,
log_handler=OptimizerParamsHandler(optimizers["g"], tag="optimizer_g"),
event_name=Events.ITERATION_STARTED(every=max(iter_per_epoch // config.interval.tensorboard.scalar, 1))
)
@trainer.on(Events.ITERATION_COMPLETED(every=max(iter_per_epoch // config.interval.tensorboard.image, 1)))
def show_images(engine):
output = engine.state.output
image_order = dict(
a=["edge_a", "real_a", "fake_a", "fake_b"],
b=["edge_b", "real_b", "rec_b", "rec_bb"]
)
for k in "ab":
tensorboard_handler.writer.add_image(
f"train/{k}",
make_2d_grid([output["img"][o] for o in image_order[k]]),
engine.state.iteration
)
with torch.no_grad():
g = torch.Generator()
g.manual_seed(config.misc.random_seed)
random_start = torch.randperm(len(engine.state.test_dataset) - 11, generator=g).tolist()[0]
test_images = dict(
a=[[], [], [], []],
b=[[], [], [], []]
)
for i in range(random_start, random_start + 10):
batch = convert_tensor(engine.state.test_dataset[i], idist.device())
for k in batch:
batch[k] = batch[k].view(1, *batch[k].size())
real = dict(a=batch["a"], b=batch["b"])
fake = dict(
a=generator(content_img=batch["edge_a"], style_img=real["a"], which_decoder="a"),
b=generator(content_img=batch["edge_a"], style_img=real["b"], which_decoder="b"),
)
rec_b = generator(content_img=batch["edge_b"], style_img=real["b"], which_decoder="b")
rec_bb = generator(content_img=batch["edge_b"], style_img=fake["b"], which_decoder="b")
test_images["a"][0].append(batch["edge_a"])
test_images["a"][1].append(batch["a"])
test_images["a"][2].append(fake["a"])
test_images["a"][3].append(fake["b"])
test_images["b"][0].append(batch["edge_b"])
test_images["b"][1].append(batch["b"])
test_images["b"][2].append(rec_b)
test_images["b"][3].append(rec_bb)
for n in "ab":
tensorboard_handler.writer.add_image(
f"test/{n}",
make_2d_grid([torch.cat(ti) for ti in test_images[n]]),
engine.state.iteration
)
return trainer
def run(task, config, logger):
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
logger.info(f"start task {task}")
with read_write(config):
config.max_iteration = ceil(config.max_pairs / config.data.train.dataloader.batch_size)
if task == "train":
train_dataset = data.DATASET.build_with(config.data.train.dataset)
logger.info(f"train with dataset:\n{train_dataset}")
train_data_loader = idist.auto_dataloader(train_dataset, **config.data.train.dataloader)
trainer = get_trainer(config, logger, train_data_loader)
if idist.get_rank() == 0:
test_dataset = data.DATASET.build_with(config.data.test.dataset)
trainer.state.test_dataset = test_dataset
try:
trainer.run(train_data_loader, max_epochs=ceil(config.max_iteration / len(train_data_loader)))
except Exception:
import traceback
print(traceback.format_exc())
else:
return NotImplemented(f"invalid task: {task}")