raycv/model/GAN/TSIT.py

89 lines
3.8 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from model import MODEL
from model.base.module import Conv2dBlock, ResidualBlock, ReverseResidualBlock
class Interpolation(nn.Module):
def __init__(self, scale_factor=None, mode='nearest', align_corners=None):
super(Interpolation, self).__init__()
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
return F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners,
recompute_scale_factor=False)
def __repr__(self):
return f"DownSampling(scale_factor={self.scale_factor}, mode={self.mode}, align_corners={self.align_corners})"
@MODEL.register_module("TSIT-Generator")
class Generator(nn.Module):
def __init__(self, content_in_channels=3, out_channels=3, base_channels=64, num_blocks=7,
padding_mode="reflect", activation_type="ReLU"):
super().__init__()
self.num_blocks = num_blocks
self.base_channels = base_channels
self.content_stream = self.build_stream(padding_mode, activation_type)
self.start_conv = Conv2dBlock(content_in_channels, base_channels, activation_type=activation_type,
norm_type="IN", kernel_size=7, padding_mode=padding_mode, padding=3)
sequence = []
multiple_now = min(2 ** self.num_blocks, 2 ** 4)
for i in range(1, self.num_blocks + 1):
m = self.num_blocks - i
multiple_prev = multiple_now
multiple_now = min(2 ** m, 2 ** 4)
sequence.append(nn.Sequential(
ReverseResidualBlock(
multiple_prev * base_channels, multiple_now * base_channels,
padding_mode=padding_mode, norm_type="FADE",
additional_norm_kwargs=dict(
condition_in_channels=multiple_prev * base_channels,
base_norm_type="BN",
padding_mode=padding_mode
)
),
Interpolation(2, mode="nearest")
))
self.generator = nn.Sequential(*sequence)
self.end_conv = Conv2dBlock(base_channels, out_channels, activation_type="Tanh",
kernel_size=7, padding_mode=padding_mode, padding=3)
def build_stream(self, padding_mode, activation_type):
multiple_now = 1
stream_sequence = []
for i in range(1, self.num_blocks + 1):
multiple_prev = multiple_now
multiple_now = min(2 ** i, 2 ** 4)
stream_sequence.append(nn.Sequential(
Interpolation(scale_factor=0.5, mode="nearest"),
ResidualBlock(
multiple_prev * self.base_channels, multiple_now * self.base_channels,
padding_mode=padding_mode, activation_type=activation_type, norm_type="IN")
))
return nn.ModuleList(stream_sequence)
def forward(self, content, z=None):
c = self.start_conv(content)
content_features = []
for i in range(self.num_blocks):
c = self.content_stream[i](c)
content_features.append(c)
if z is None:
z = torch.randn(size=content_features[-1].size(), device=content_features[-1].device)
for i in range(self.num_blocks):
m = - i - 1
res_block = self.generator[i][0]
res_block.conv1.normalization.set_feature(content_features[m])
res_block.conv2.normalization.set_feature(content_features[m])
if res_block.learn_skip_connection:
res_block.res_conv.normalization.set_feature(content_features[m])
return self.end_conv(self.generator(z))