raycv/engine/util/loss.py
2020-10-22 23:19:03 +08:00

58 lines
2.1 KiB
Python

import ignite.distributed as idist
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import OmegaConf
from loss.gan import GANLoss
def gan_loss(config):
gan_loss_cfg = OmegaConf.to_container(config)
gan_loss_cfg.pop("weight")
gl = GANLoss(**gan_loss_cfg).to(idist.device())
def gan_loss_fn(prediction, target_is_real: bool, is_discriminator=False):
if isinstance(prediction, torch.Tensor):
# origin
return gl(prediction, target_is_real, is_discriminator)
elif isinstance(prediction, list) and isinstance(prediction[0], list):
# for multi scale discriminator, e.g. MultiScaleDiscriminator
loss = 0
for p in prediction:
loss += gl(p[-1], target_is_real, is_discriminator)
return loss
elif isinstance(prediction, list) and isinstance(prediction[0], torch.Tensor):
# for discriminator set `need_intermediate_feature` true
return gl(prediction[-1], target_is_real, is_discriminator)
else:
raise NotImplementedError("not support discriminator output")
return gan_loss_fn
def pixel_loss(level):
return nn.L1Loss() if level == 1 else nn.MSELoss()
def mse_loss(x, target_flag):
return F.mse_loss(x, torch.ones_like(x) if target_flag else torch.zeros_like(x))
def bce_loss(x, target_flag):
return F.binary_cross_entropy_with_logits(x, torch.ones_like(x) if target_flag else torch.zeros_like(x))
def feature_match_loss(level, weight_policy):
compare_loss = pixel_loss(level)
assert weight_policy in ["same", "exponential_decline"]
def fm_loss(generated_features, target_features):
num_scale = len(generated_features)
loss = 0
for s_i in range(num_scale):
for i in range(len(generated_features[s_i]) - 1):
weight = 1 if weight_policy == "same" else 2 ** i
loss += weight * compare_loss(generated_features[s_i][i], target_features[s_i][i].detach()) / num_scale
return loss
return fm_loss