fix bug
This commit is contained in:
parent
bf201c506d
commit
0c58965641
@ -46,7 +46,7 @@ class EpisodicDataset(Dataset):
|
|||||||
self.origin = origin_dataset
|
self.origin = origin_dataset
|
||||||
self.num_class = num_class
|
self.num_class = num_class
|
||||||
assert self.num_class < len(self.origin.classes_list)
|
assert self.num_class < len(self.origin.classes_list)
|
||||||
self.num_set = num_set*2 # 2*K
|
self.num_set = num_set # K
|
||||||
self.num_episodes = num_episodes
|
self.num_episodes = num_episodes
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
@ -54,15 +54,23 @@ class EpisodicDataset(Dataset):
|
|||||||
|
|
||||||
def __getitem__(self, _):
|
def __getitem__(self, _):
|
||||||
random_classes = torch.randint(high=len(self.origin.classes_list), size=(self.num_class,)).tolist()
|
random_classes = torch.randint(high=len(self.origin.classes_list), size=(self.num_class,)).tolist()
|
||||||
item = {}
|
support_set_list = []
|
||||||
for i in random_classes:
|
query_set_list = []
|
||||||
image_list = self.origin.classes_list[i]
|
target_list = []
|
||||||
if len(image_list) > self.num_set:
|
for i, c in enumerate(random_classes):
|
||||||
idx_list = torch.randperm(len(image_list))[:self.num_set].tolist()
|
image_list = self.origin.classes_list[c]
|
||||||
|
if len(image_list) > self.num_set * 2:
|
||||||
|
idx_list = torch.randperm(len(image_list))[:self.num_set*2].tolist()
|
||||||
else:
|
else:
|
||||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set,)).tolist()
|
idx_list = torch.randint(high=len(image_list), size=(self.num_set*2,)).tolist()
|
||||||
item[i] = [self.origin[idx] for idx in idx_list]
|
support_set_list.extend([self.origin[idx] for idx in idx_list[:self.num_set]])
|
||||||
return item
|
query_set_list.extend([self.origin[idx] for idx in idx_list[self.num_set:]])
|
||||||
|
target_list.extend([i]*self.num_set)
|
||||||
|
return {
|
||||||
|
"support": torch.stack(support_set_list),
|
||||||
|
"query": torch.stack(query_set_list),
|
||||||
|
"target": torch.tensor(target_list)
|
||||||
|
}
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return "<EpisodicDataset N={} K={} NUM={}>".format(self.num_class, self.num_set, self.num_episodes)
|
return "<EpisodicDataset N={} K={} NUM={}>".format(self.num_class, self.num_set, self.num_episodes)
|
||||||
|
|||||||
49
test.py
49
test.py
@ -3,6 +3,7 @@ from torch.utils.data import DataLoader
|
|||||||
import torchvision
|
import torchvision
|
||||||
from data import dataset
|
from data import dataset
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from ignite.utils import convert_tensor
|
||||||
|
|
||||||
|
|
||||||
def setup_seed(seed):
|
def setup_seed(seed):
|
||||||
@ -31,15 +32,17 @@ def euclidean_dist(x, y):
|
|||||||
|
|
||||||
def evaluate(query, target, support):
|
def evaluate(query, target, support):
|
||||||
"""
|
"""
|
||||||
:param query: NK x D vector
|
:param query: B x NK x D vector
|
||||||
:param target: NK x 1 vector
|
:param target: B x NK x 1 vector
|
||||||
:param support: N x K x D vector
|
:param support: B x N x K x D vector
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
|
K = support.size(1)
|
||||||
prototypes = support.mean(1)
|
prototypes = support.mean(1)
|
||||||
distance = euclidean_dist(query, prototypes)
|
distance = euclidean_dist(query, prototypes)
|
||||||
indices = distance.argmin(1)
|
indices = distance.argmin(1)
|
||||||
return torch.eq(target, indices).float().mean()
|
y_hat = torch.tensor([target[i*K-1] for i in indices])
|
||||||
|
return torch.eq(target.to("cpu"), y_hat).float().mean()
|
||||||
|
|
||||||
|
|
||||||
class Flatten(nn.Module):
|
class Flatten(nn.Module):
|
||||||
@ -49,6 +52,7 @@ class Flatten(nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return x.view(x.size(0), -1)
|
return x.view(x.size(0), -1)
|
||||||
|
|
||||||
|
|
||||||
# def make_extractor():
|
# def make_extractor():
|
||||||
# resnet50 = torchvision.models.resnet50(pretrained=True)
|
# resnet50 = torchvision.models.resnet50(pretrained=True)
|
||||||
# resnet50.to(torch.device("cuda"))
|
# resnet50.to(torch.device("cuda"))
|
||||||
@ -97,41 +101,32 @@ def test():
|
|||||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||||
])
|
])
|
||||||
origin_dataset = dataset.CARS("/data/few-shot/STANFORD-CARS/", transform=data_transform)
|
origin_dataset = dataset.CARS("/data/few-shot/STANFORD-CARS/", transform=data_transform)
|
||||||
|
#origin_dataset = dataset.ImprovedImageFolder("/data/few-shot/mini_imagenet_full_size/train", transform=data_transform)
|
||||||
|
|
||||||
|
N = torch.randint(5, 10, (1,)).tolist()[0]
|
||||||
|
K = torch.randint(1, 10, (1,)).tolist()[0]
|
||||||
episodic_dataset = dataset.EpisodicDataset(
|
episodic_dataset = dataset.EpisodicDataset(
|
||||||
origin_dataset, # 抽取数据集
|
origin_dataset, # 抽取数据集
|
||||||
torch.randint(5, 10, (1,)).tolist()[0], # N
|
N, # N
|
||||||
torch.randint(1, 10, (1,)).tolist()[0], # K
|
K, # K
|
||||||
5 # 任务数目
|
100 # 任务数目
|
||||||
)
|
)
|
||||||
print(episodic_dataset)
|
print(episodic_dataset)
|
||||||
|
|
||||||
data_loader = DataLoader(episodic_dataset)
|
data_loader = DataLoader(episodic_dataset, batch_size=2)
|
||||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
extractor = make_extractor()
|
extractor = make_extractor()
|
||||||
accs = []
|
accs = []
|
||||||
for item in data_loader:
|
for item in data_loader:
|
||||||
support_list = []
|
|
||||||
query_list = []
|
|
||||||
class_id_list = []
|
|
||||||
for class_id in item:
|
|
||||||
for i in range(len(item[class_id])):
|
|
||||||
item[class_id][i] = item[class_id][i].to(device)
|
|
||||||
num_support_set = len(item[class_id]) // 2
|
|
||||||
num_query_set = len(item[class_id]) - num_support_set
|
|
||||||
support_list.append(torch.stack([extractor(pair) for pair in item[class_id][:num_support_set]]))
|
|
||||||
query_list.append(torch.stack([extractor(pair) for pair in item[class_id][num_support_set:]]))
|
|
||||||
class_id_list.extend([class_id]*num_query_set)
|
|
||||||
|
|
||||||
query = torch.squeeze(torch.cat(query_list)).to(device)
|
item = convert_tensor(item, device)
|
||||||
support = torch.squeeze(torch.stack(support_list)).to(device)
|
query_batch = [extractor(images) for images in item["query"]]
|
||||||
target = torch.squeeze(torch.tensor(class_id_list)).to(device)
|
support_batch = [torch.stack(torch.split(extractor(images), K)) for images in item["support"]]
|
||||||
|
for i in range(len(query_batch)):
|
||||||
accs.append(evaluate(query, target, support))
|
accs.append(evaluate(query_batch[i], item["target"][i], support_batch[i]))
|
||||||
|
print(torch.tensor(accs).mean().item())
|
||||||
print(accs)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
setup_seed(10)
|
setup_seed(100)
|
||||||
test()
|
test()
|
||||||
Loading…
Reference in New Issue
Block a user