This commit is contained in:
Ray Wong 2020-07-06 12:41:32 +08:00
parent bf201c506d
commit 0c58965641
2 changed files with 40 additions and 37 deletions

View File

@ -46,7 +46,7 @@ class EpisodicDataset(Dataset):
self.origin = origin_dataset
self.num_class = num_class
assert self.num_class < len(self.origin.classes_list)
self.num_set = num_set*2 # 2*K
self.num_set = num_set # K
self.num_episodes = num_episodes
def __len__(self):
@ -54,15 +54,23 @@ class EpisodicDataset(Dataset):
def __getitem__(self, _):
random_classes = torch.randint(high=len(self.origin.classes_list), size=(self.num_class,)).tolist()
item = {}
for i in random_classes:
image_list = self.origin.classes_list[i]
if len(image_list) > self.num_set:
idx_list = torch.randperm(len(image_list))[:self.num_set].tolist()
support_set_list = []
query_set_list = []
target_list = []
for i, c in enumerate(random_classes):
image_list = self.origin.classes_list[c]
if len(image_list) > self.num_set * 2:
idx_list = torch.randperm(len(image_list))[:self.num_set*2].tolist()
else:
idx_list = torch.randint(high=len(image_list), size=(self.num_set,)).tolist()
item[i] = [self.origin[idx] for idx in idx_list]
return item
idx_list = torch.randint(high=len(image_list), size=(self.num_set*2,)).tolist()
support_set_list.extend([self.origin[idx] for idx in idx_list[:self.num_set]])
query_set_list.extend([self.origin[idx] for idx in idx_list[self.num_set:]])
target_list.extend([i]*self.num_set)
return {
"support": torch.stack(support_set_list),
"query": torch.stack(query_set_list),
"target": torch.tensor(target_list)
}
def __repr__(self):
return "<EpisodicDataset N={} K={} NUM={}>".format(self.num_class, self.num_set, self.num_episodes)

49
test.py
View File

@ -3,6 +3,7 @@ from torch.utils.data import DataLoader
import torchvision
from data import dataset
import torch.nn as nn
from ignite.utils import convert_tensor
def setup_seed(seed):
@ -31,15 +32,17 @@ def euclidean_dist(x, y):
def evaluate(query, target, support):
"""
:param query: NK x D vector
:param target: NK x 1 vector
:param support: N x K x D vector
:param query: B x NK x D vector
:param target: B x NK x 1 vector
:param support: B x N x K x D vector
:return:
"""
K = support.size(1)
prototypes = support.mean(1)
distance = euclidean_dist(query, prototypes)
indices = distance.argmin(1)
return torch.eq(target, indices).float().mean()
y_hat = torch.tensor([target[i*K-1] for i in indices])
return torch.eq(target.to("cpu"), y_hat).float().mean()
class Flatten(nn.Module):
@ -49,6 +52,7 @@ class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
# def make_extractor():
# resnet50 = torchvision.models.resnet50(pretrained=True)
# resnet50.to(torch.device("cuda"))
@ -97,41 +101,32 @@ def test():
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
origin_dataset = dataset.CARS("/data/few-shot/STANFORD-CARS/", transform=data_transform)
#origin_dataset = dataset.ImprovedImageFolder("/data/few-shot/mini_imagenet_full_size/train", transform=data_transform)
N = torch.randint(5, 10, (1,)).tolist()[0]
K = torch.randint(1, 10, (1,)).tolist()[0]
episodic_dataset = dataset.EpisodicDataset(
origin_dataset, # 抽取数据集
torch.randint(5, 10, (1,)).tolist()[0], # N
torch.randint(1, 10, (1,)).tolist()[0], # K
5 # 任务数目
N, # N
K, # K
100 # 任务数目
)
print(episodic_dataset)
data_loader = DataLoader(episodic_dataset)
data_loader = DataLoader(episodic_dataset, batch_size=2)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
extractor = make_extractor()
accs = []
for item in data_loader:
support_list = []
query_list = []
class_id_list = []
for class_id in item:
for i in range(len(item[class_id])):
item[class_id][i] = item[class_id][i].to(device)
num_support_set = len(item[class_id]) // 2
num_query_set = len(item[class_id]) - num_support_set
support_list.append(torch.stack([extractor(pair) for pair in item[class_id][:num_support_set]]))
query_list.append(torch.stack([extractor(pair) for pair in item[class_id][num_support_set:]]))
class_id_list.extend([class_id]*num_query_set)
query = torch.squeeze(torch.cat(query_list)).to(device)
support = torch.squeeze(torch.stack(support_list)).to(device)
target = torch.squeeze(torch.tensor(class_id_list)).to(device)
accs.append(evaluate(query, target, support))
print(accs)
item = convert_tensor(item, device)
query_batch = [extractor(images) for images in item["query"]]
support_batch = [torch.stack(torch.split(extractor(images), K)) for images in item["support"]]
for i in range(len(query_batch)):
accs.append(evaluate(query_batch[i], item["target"][i], support_batch[i]))
print(torch.tensor(accs).mean().item())
if __name__ == '__main__':
setup_seed(10)
setup_seed(100)
test()