test
This commit is contained in:
parent
3a72dcb5f0
commit
ead93c1b0e
@ -8,11 +8,13 @@ from io import BytesIO
|
|||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
from torchvision.datasets.folder import default_loader
|
from torchvision.datasets.folder import default_loader
|
||||||
from torchvision.datasets import ImageFolder
|
from torchvision.datasets import ImageFolder
|
||||||
|
from torchvision import transforms
|
||||||
|
from torchvision.transforms import functional
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
|
|
||||||
|
|
||||||
class CARS(Dataset):
|
class _CARS(Dataset):
|
||||||
def __init__(self, root, loader=default_loader, transform=None):
|
def __init__(self, root, loader=default_loader, transform=None):
|
||||||
self.root = Path(root)
|
self.root = Path(root)
|
||||||
self.transform = transform
|
self.transform = transform
|
||||||
@ -32,7 +34,7 @@ class CARS(Dataset):
|
|||||||
sample = self.loader(self.root / "cars_train" / file_name)
|
sample = self.loader(self.root / "cars_train" / file_name)
|
||||||
if self.transform is not None:
|
if self.transform is not None:
|
||||||
sample = self.transform(sample)
|
sample = self.transform(sample)
|
||||||
return sample
|
return sample, target
|
||||||
|
|
||||||
|
|
||||||
class ImprovedImageFolder(ImageFolder):
|
class ImprovedImageFolder(ImageFolder):
|
||||||
@ -44,7 +46,7 @@ class ImprovedImageFolder(ImageFolder):
|
|||||||
assert len(self.classes_list) == len(self.classes)
|
assert len(self.classes_list) == len(self.classes)
|
||||||
|
|
||||||
def __getitem__(self, item):
|
def __getitem__(self, item):
|
||||||
return super().__getitem__(item)[0]
|
return super().__getitem__(item)
|
||||||
|
|
||||||
|
|
||||||
class LMDBDataset(Dataset):
|
class LMDBDataset(Dataset):
|
||||||
@ -61,16 +63,10 @@ class LMDBDataset(Dataset):
|
|||||||
|
|
||||||
def __getitem__(self, i):
|
def __getitem__(self, i):
|
||||||
with self.db.begin(write=False) as txn:
|
with self.db.begin(write=False) as txn:
|
||||||
sample = Image.open(BytesIO(txn.get("{}".format(i).encode())))
|
sample, target = pickle.loads(txn.get("{}".format(i).encode()))
|
||||||
if sample.mode != "RGB":
|
|
||||||
sample = sample.convert("RGB")
|
|
||||||
if self.transform is not None:
|
if self.transform is not None:
|
||||||
try:
|
|
||||||
sample = self.transform(sample)
|
sample = self.transform(sample)
|
||||||
except RuntimeError as re:
|
return sample, target
|
||||||
print(sample.format, sample.size, sample.mode)
|
|
||||||
raise re
|
|
||||||
return sample
|
|
||||||
|
|
||||||
|
|
||||||
class EpisodicDataset(Dataset):
|
class EpisodicDataset(Dataset):
|
||||||
@ -81,6 +77,24 @@ class EpisodicDataset(Dataset):
|
|||||||
self.num_set = num_set # K
|
self.num_set = num_set # K
|
||||||
self.num_episodes = num_episodes
|
self.num_episodes = num_episodes
|
||||||
|
|
||||||
|
self.t0 = transforms.Compose([
|
||||||
|
transforms.Resize((224, 224)),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
self.transform = transforms.Compose([
|
||||||
|
transforms.Resize((224, 224)),
|
||||||
|
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
|
||||||
|
def apply_transform(self, img):
|
||||||
|
# img1 = self.transform(img)
|
||||||
|
# img2 = self.transform(img)
|
||||||
|
# return [self.t0(img), self.t0(functional.hflip(img))]
|
||||||
|
return [self.t0(img)]
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self.num_episodes
|
return self.num_episodes
|
||||||
|
|
||||||
@ -95,8 +109,11 @@ class EpisodicDataset(Dataset):
|
|||||||
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
||||||
else:
|
else:
|
||||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
||||||
support_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[:self.num_set]])
|
support = [self.origin[image_list[idx]][0] for idx in idx_list[:self.num_set]]
|
||||||
query_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[self.num_set:]])
|
query = [self.origin[image_list[idx]][0] for idx in idx_list[:self.num_set]]
|
||||||
|
|
||||||
|
support_set_list.extend(sum(map(self.apply_transform, support), list()))
|
||||||
|
query_set_list.extend(sum(map(self.apply_transform, query), list()))
|
||||||
target_list.extend([i] * self.num_set)
|
target_list.extend([i] * self.num_set)
|
||||||
return {
|
return {
|
||||||
"support": torch.stack(support_set_list),
|
"support": torch.stack(support_set_list),
|
||||||
|
|||||||
@ -1,30 +1,31 @@
|
|||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
from io import BytesIO
|
|
||||||
import argparse
|
import argparse
|
||||||
|
from PIL import Image
|
||||||
import lmdb
|
import lmdb
|
||||||
from data.dataset import CARS, ImprovedImageFolder
|
from data.dataset import ImprovedImageFolder
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
def content_loader(path):
|
def content_loader(path):
|
||||||
with open(path, "rb") as f:
|
im = Image.open(path)
|
||||||
return f.read()
|
im = im.resize((256, 256))
|
||||||
|
if im.mode != "RGB":
|
||||||
|
im = im.convert("RGB")
|
||||||
|
return im
|
||||||
|
|
||||||
|
|
||||||
def dataset_to_lmdb(dataset, lmdb_path):
|
def dataset_to_lmdb(dataset, lmdb_path):
|
||||||
env = lmdb.open(lmdb_path, map_size=1099511627776*2, subdir=os.path.isdir(lmdb_path))
|
env = lmdb.open(lmdb_path, map_size=1099511627776*2, subdir=os.path.isdir(lmdb_path))
|
||||||
with env.begin(write=True) as txn:
|
with env.begin(write=True) as txn:
|
||||||
for i in tqdm(range(len(dataset)), ncols=50):
|
for i in tqdm(range(len(dataset)), ncols=50):
|
||||||
txn.put("{}".format(i).encode(), bytearray(dataset[i]))
|
txn.put("{}".format(i).encode(), pickle.dumps(dataset[i]))
|
||||||
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
||||||
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
||||||
|
|
||||||
|
|
||||||
def transform(save_path, dataset_path):
|
def transform(save_path, dataset_path):
|
||||||
print(save_path, dataset_path)
|
print(save_path, dataset_path)
|
||||||
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", loader=content_loader)
|
|
||||||
origin_dataset = ImprovedImageFolder(dataset_path, loader=content_loader)
|
origin_dataset = ImprovedImageFolder(dataset_path, loader=content_loader)
|
||||||
dataset_to_lmdb(origin_dataset, save_path)
|
dataset_to_lmdb(origin_dataset, save_path)
|
||||||
|
|
||||||
|
|||||||
0
loss/__init__.py
Executable file
0
loss/__init__.py
Executable file
19
loss/prototypical.py
Executable file
19
loss/prototypical.py
Executable file
@ -0,0 +1,19 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def euclidean_dist(x, y):
|
||||||
|
"""
|
||||||
|
Compute euclidean distance between two tensors
|
||||||
|
"""
|
||||||
|
# x: B x N x D
|
||||||
|
# y: B x M x D
|
||||||
|
n = x.size(-2)
|
||||||
|
m = y.size(-2)
|
||||||
|
d = x.size(-1)
|
||||||
|
if d != y.size(-1):
|
||||||
|
raise Exception
|
||||||
|
|
||||||
|
x = x.unsqueeze(2).expand(x.size(0), n, m, d) # B x N x M x D
|
||||||
|
y = y.unsqueeze(1).expand(x.size(0), n, m, d)
|
||||||
|
|
||||||
|
return torch.pow(x - y, 2).sum(-1)
|
||||||
31
test.py
31
test.py
@ -49,12 +49,11 @@ def evaluate(query, target, support):
|
|||||||
|
|
||||||
def test(lmdb_path, import_path):
|
def test(lmdb_path, import_path):
|
||||||
dt = torchvision.transforms.Compose([
|
dt = torchvision.transforms.Compose([
|
||||||
torchvision.transforms.Resize((256, 256)),
|
|
||||||
torchvision.transforms.CenterCrop(224),
|
torchvision.transforms.CenterCrop(224),
|
||||||
torchvision.transforms.ToTensor(),
|
torchvision.transforms.ToTensor(),
|
||||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
])
|
])
|
||||||
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=dt)
|
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=None)
|
||||||
N = 5
|
N = 5
|
||||||
K = 5
|
K = 5
|
||||||
episodic_dataset = dataset.EpisodicDataset(
|
episodic_dataset = dataset.EpisodicDataset(
|
||||||
@ -65,8 +64,8 @@ def test(lmdb_path, import_path):
|
|||||||
)
|
)
|
||||||
print(episodic_dataset)
|
print(episodic_dataset)
|
||||||
|
|
||||||
data_loader = DataLoader(episodic_dataset, batch_size=20, pin_memory=False)
|
data_loader = DataLoader(episodic_dataset, batch_size=8, pin_memory=False)
|
||||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
submit = import_module(f"submit.{import_path}")
|
submit = import_module(f"submit.{import_path}")
|
||||||
|
|
||||||
@ -78,12 +77,19 @@ def test(lmdb_path, import_path):
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for item in tqdm(data_loader):
|
for item in tqdm(data_loader):
|
||||||
item = convert_tensor(item, device, non_blocking=True)
|
item = convert_tensor(item, device, non_blocking=True)
|
||||||
# item["query"]: B x NK x 3 x W x H
|
# item["query"]: B x ANK x 3 x W x H
|
||||||
# item["support"]: B x NK x 3 x W x H
|
# item["support"]: B x ANK x 3 x W x H
|
||||||
# item["target"]: B x NK
|
# item["target"]: B x NK
|
||||||
batch_size = item["target"].size(0)
|
batch_size = item["target"].size(0)
|
||||||
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
|
image_size = item["query"].shape[-3:]
|
||||||
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
A = int(item["query"].size(1) / (N * K))
|
||||||
|
|
||||||
|
query_batch = extractor(item["query"].view([-1, *image_size])).view(batch_size, N * K, A, -1)
|
||||||
|
support_batch = extractor(item["support"].view([-1, *image_size])).view(batch_size, N, K, A, -1)
|
||||||
|
|
||||||
|
query_batch = torch.mean(query_batch, -2)
|
||||||
|
support_batch = torch.mean(support_batch, -2)
|
||||||
|
|
||||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||||
print(torch.tensor(accs).mean().item())
|
print(torch.tensor(accs).mean().item())
|
||||||
|
|
||||||
@ -91,10 +97,11 @@ def test(lmdb_path, import_path):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
setup_seed(100)
|
setup_seed(100)
|
||||||
defined_path = [
|
defined_path = [
|
||||||
"/data/few-shot/lmdb/dogs/data.lmdb",
|
"/data/few-shot/lmdb256/dogs.lmdb",
|
||||||
"/data/few-shot/lmdb/flowers/data.lmdb",
|
"/data/few-shot/lmdb256/flowers.lmdb",
|
||||||
"/data/few-shot/lmdb/256-object/data.lmdb",
|
"/data/few-shot/lmdb256/256-object.lmdb",
|
||||||
"/data/few-shot/lmdb/dtd/data.lmdb",
|
"/data/few-shot/lmdb256/dtd.lmdb",
|
||||||
|
"/data/few-shot/lmdb256/mini-imagenet-test.lmdb"
|
||||||
]
|
]
|
||||||
parser = argparse.ArgumentParser(description="test")
|
parser = argparse.ArgumentParser(description="test")
|
||||||
parser.add_argument('-i', "--import_path", required=True)
|
parser.add_argument('-i', "--import_path", required=True)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user