Compare commits
1 Commits
ead93c1b0e
...
57ad9a2572
| Author | SHA1 | Date | |
|---|---|---|---|
| 57ad9a2572 |
@ -1,10 +1,9 @@
|
||||
from scipy.io import loadmat
|
||||
import torch
|
||||
import torchvision
|
||||
import lmdb
|
||||
import os
|
||||
import pickle
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.folder import default_loader
|
||||
from torchvision.datasets import ImageFolder
|
||||
@ -44,7 +43,7 @@ class ImprovedImageFolder(ImageFolder):
|
||||
assert len(self.classes_list) == len(self.classes)
|
||||
|
||||
def __getitem__(self, item):
|
||||
return super().__getitem__(item)[0]
|
||||
return super().__getitem__(item)
|
||||
|
||||
|
||||
class LMDBDataset(Dataset):
|
||||
@ -61,16 +60,10 @@ class LMDBDataset(Dataset):
|
||||
|
||||
def __getitem__(self, i):
|
||||
with self.db.begin(write=False) as txn:
|
||||
sample = Image.open(BytesIO(txn.get("{}".format(i).encode())))
|
||||
if sample.mode != "RGB":
|
||||
sample = sample.convert("RGB")
|
||||
sample, target = pickle.loads(txn.get("{}".format(i).encode()))
|
||||
if self.transform is not None:
|
||||
try:
|
||||
sample = self.transform(sample)
|
||||
except RuntimeError as re:
|
||||
print(sample.format, sample.size, sample.mode)
|
||||
raise re
|
||||
return sample
|
||||
sample = self.transform(sample)
|
||||
return sample, target
|
||||
|
||||
|
||||
class EpisodicDataset(Dataset):
|
||||
@ -81,6 +74,20 @@ class EpisodicDataset(Dataset):
|
||||
self.num_set = num_set # K
|
||||
self.num_episodes = num_episodes
|
||||
|
||||
self.t0 = torchvision.transforms.Compose([
|
||||
# torchvision.transforms.Resize((224, 224)),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
def _fetch_list_data(self, id_list):
|
||||
result = []
|
||||
for i in id_list:
|
||||
img = self.origin[i][0]
|
||||
result.extend([self.t0(img)])
|
||||
return result
|
||||
|
||||
def __len__(self):
|
||||
return self.num_episodes
|
||||
|
||||
@ -89,15 +96,20 @@ class EpisodicDataset(Dataset):
|
||||
support_set_list = []
|
||||
query_set_list = []
|
||||
target_list = []
|
||||
for i, c in enumerate(random_classes):
|
||||
for tag, c in enumerate(random_classes):
|
||||
image_list = self.origin.classes_list[c]
|
||||
if len(image_list) > self.num_set * 2:
|
||||
|
||||
if len(image_list) >= self.num_set * 2:
|
||||
# have enough images belong to this class
|
||||
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
||||
else:
|
||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
||||
support_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[:self.num_set]])
|
||||
query_set_list.extend([self.origin[image_list[idx]] for idx in idx_list[self.num_set:]])
|
||||
target_list.extend([i] * self.num_set)
|
||||
|
||||
support = self._fetch_list_data(map(image_list.__getitem__, idx_list[:self.num_set]))
|
||||
query = self._fetch_list_data(map(image_list.__getitem__, idx_list[self.num_set:]))
|
||||
support_set_list.extend(support)
|
||||
query_set_list.extend(query)
|
||||
target_list.extend([tag] * self.num_set)
|
||||
return {
|
||||
"support": torch.stack(support_set_list),
|
||||
"query": torch.stack(query_set_list),
|
||||
|
||||
@ -1,38 +1,34 @@
|
||||
import os
|
||||
import pickle
|
||||
from io import BytesIO
|
||||
import argparse
|
||||
|
||||
from PIL import Image
|
||||
import lmdb
|
||||
from data.dataset import CARS, ImprovedImageFolder
|
||||
from data.dataset import ImprovedImageFolder
|
||||
from tqdm import tqdm
|
||||
import fire
|
||||
|
||||
|
||||
def content_loader(path):
|
||||
with open(path, "rb") as f:
|
||||
return f.read()
|
||||
im = Image.open(path)
|
||||
im = im.resize((256, 256))
|
||||
if im.mode != "RGB":
|
||||
im = im.convert("RGB")
|
||||
return im
|
||||
|
||||
|
||||
def dataset_to_lmdb(dataset, lmdb_path):
|
||||
env = lmdb.open(lmdb_path, map_size=1099511627776*2, subdir=os.path.isdir(lmdb_path))
|
||||
with env.begin(write=True) as txn:
|
||||
for i in tqdm(range(len(dataset)), ncols=50):
|
||||
txn.put("{}".format(i).encode(), bytearray(dataset[i]))
|
||||
txn.put("{}".format(i).encode(), pickle.dumps(dataset[i]))
|
||||
txn.put(b"classes_list", pickle.dumps(dataset.classes_list))
|
||||
txn.put(b"__len__", pickle.dumps(len(dataset)))
|
||||
|
||||
|
||||
def transform(save_path, dataset_path):
|
||||
print(save_path, dataset_path)
|
||||
# origin_dataset = CARS("/data/few-shot/STANFORD-CARS/", loader=content_loader)
|
||||
origin_dataset = ImprovedImageFolder(dataset_path, loader=content_loader)
|
||||
dataset_to_lmdb(origin_dataset, save_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description="transform dataset to lmdb database")
|
||||
parser.add_argument('--save', required=True)
|
||||
parser.add_argument('--dataset', required=True)
|
||||
args = parser.parse_args()
|
||||
transform(args.save, args.dataset)
|
||||
|
||||
fire.Fire(transform)
|
||||
|
||||
58
test.py
58
test.py
@ -48,57 +48,53 @@ def evaluate(query, target, support):
|
||||
|
||||
|
||||
def test(lmdb_path, import_path):
|
||||
dt = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize((256, 256)),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=dt)
|
||||
N = 5
|
||||
K = 5
|
||||
episodic_dataset = dataset.EpisodicDataset(
|
||||
origin_dataset, # 抽取数据集
|
||||
N, # N
|
||||
K, # K
|
||||
100 # 任务数目
|
||||
)
|
||||
print(episodic_dataset)
|
||||
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=None)
|
||||
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=20, pin_memory=False)
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
submit = import_module(f"submit.{import_path}")
|
||||
|
||||
extractor = submit.make_model()
|
||||
extractor.to(device)
|
||||
|
||||
accs = []
|
||||
batch_size = 10
|
||||
N = 5
|
||||
K = 5
|
||||
episodic_dataset = dataset.EpisodicDataset(origin_dataset, N, K, 100)
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=batch_size, pin_memory=False)
|
||||
|
||||
with torch.no_grad():
|
||||
accs = []
|
||||
for item in tqdm(data_loader):
|
||||
item = convert_tensor(item, device, non_blocking=True)
|
||||
# item["query"]: B x NK x 3 x W x H
|
||||
# item["support"]: B x NK x 3 x W x H
|
||||
# item["query"]: B x NKA x 3 x W x H
|
||||
# item["support"]: B x NKA x 3 x W x H
|
||||
# item["target"]: B x NK
|
||||
batch_size = item["target"].size(0)
|
||||
query_batch = extractor(item["query"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N * K, -1)
|
||||
support_batch = extractor(item["support"].view([-1, *item["query"].shape[-3:]])).view(batch_size, N, K, -1)
|
||||
A = item["query"].size(1) // item["target"].size(1)
|
||||
image_size = item["query"].shape[-3:]
|
||||
query_batch = extractor(item["query"].view([-1, *image_size])).view(batch_size, N * K, A, -1)
|
||||
support_batch = extractor(item["support"].view([-1, *image_size])).view(batch_size, N, K, A, -1)
|
||||
query_batch = torch.mean(query_batch, dim=-2)
|
||||
support_batch = torch.mean(support_batch, dim=-2)
|
||||
assert query_batch.shape[:2] == item["target"].shape[:2]
|
||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||
print(torch.tensor(accs).mean().item())
|
||||
r = torch.tensor(accs).mean().item()
|
||||
print(lmdb_path, r)
|
||||
return r
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
setup_seed(100)
|
||||
defined_path = [
|
||||
"/data/few-shot/lmdb/dogs/data.lmdb",
|
||||
"/data/few-shot/lmdb/flowers/data.lmdb",
|
||||
"/data/few-shot/lmdb/256-object/data.lmdb",
|
||||
"/data/few-shot/lmdb/dtd/data.lmdb",
|
||||
]
|
||||
"/data/few-shot/lmdb256/dogs.lmdb",
|
||||
"/data/few-shot/lmdb256/flowers.lmdb",
|
||||
"/data/few-shot/lmdb256/256-object.lmdb",
|
||||
"/data/few-shot/lmdb256/dtd.lmdb",
|
||||
"/data/few-shot/lmdb256/cars_train.lmdb",
|
||||
"/data/few-shot/lmdb256/cub.lmdb",
|
||||
]
|
||||
parser = argparse.ArgumentParser(description="test")
|
||||
parser.add_argument('-i', "--import_path", required=True)
|
||||
args = parser.parse_args()
|
||||
for path in defined_path:
|
||||
print(path)
|
||||
test(path, args.import_path)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user