Compare commits
1 Commits
ead93c1b0e
...
57ad9a2572
| Author | SHA1 | Date | |
|---|---|---|---|
| 57ad9a2572 |
@ -1,20 +1,17 @@
|
||||
from scipy.io import loadmat
|
||||
import torch
|
||||
import torchvision
|
||||
import lmdb
|
||||
import os
|
||||
import pickle
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.folder import default_loader
|
||||
from torchvision.datasets import ImageFolder
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms import functional
|
||||
from pathlib import Path
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class _CARS(Dataset):
|
||||
class CARS(Dataset):
|
||||
def __init__(self, root, loader=default_loader, transform=None):
|
||||
self.root = Path(root)
|
||||
self.transform = transform
|
||||
@ -34,7 +31,7 @@ class _CARS(Dataset):
|
||||
sample = self.loader(self.root / "cars_train" / file_name)
|
||||
if self.transform is not None:
|
||||
sample = self.transform(sample)
|
||||
return sample, target
|
||||
return sample
|
||||
|
||||
|
||||
class ImprovedImageFolder(ImageFolder):
|
||||
@ -77,23 +74,19 @@ class EpisodicDataset(Dataset):
|
||||
self.num_set = num_set # K
|
||||
self.num_episodes = num_episodes
|
||||
|
||||
self.t0 = transforms.Compose([
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
self.t0 = torchvision.transforms.Compose([
|
||||
# torchvision.transforms.Resize((224, 224)),
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
def apply_transform(self, img):
|
||||
# img1 = self.transform(img)
|
||||
# img2 = self.transform(img)
|
||||
# return [self.t0(img), self.t0(functional.hflip(img))]
|
||||
return [self.t0(img)]
|
||||
def _fetch_list_data(self, id_list):
|
||||
result = []
|
||||
for i in id_list:
|
||||
img = self.origin[i][0]
|
||||
result.extend([self.t0(img)])
|
||||
return result
|
||||
|
||||
def __len__(self):
|
||||
return self.num_episodes
|
||||
@ -103,18 +96,20 @@ class EpisodicDataset(Dataset):
|
||||
support_set_list = []
|
||||
query_set_list = []
|
||||
target_list = []
|
||||
for i, c in enumerate(random_classes):
|
||||
for tag, c in enumerate(random_classes):
|
||||
image_list = self.origin.classes_list[c]
|
||||
if len(image_list) > self.num_set * 2:
|
||||
|
||||
if len(image_list) >= self.num_set * 2:
|
||||
# have enough images belong to this class
|
||||
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
|
||||
else:
|
||||
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
|
||||
support = [self.origin[image_list[idx]][0] for idx in idx_list[:self.num_set]]
|
||||
query = [self.origin[image_list[idx]][0] for idx in idx_list[:self.num_set]]
|
||||
|
||||
support_set_list.extend(sum(map(self.apply_transform, support), list()))
|
||||
query_set_list.extend(sum(map(self.apply_transform, query), list()))
|
||||
target_list.extend([i] * self.num_set)
|
||||
support = self._fetch_list_data(map(image_list.__getitem__, idx_list[:self.num_set]))
|
||||
query = self._fetch_list_data(map(image_list.__getitem__, idx_list[self.num_set:]))
|
||||
support_set_list.extend(support)
|
||||
query_set_list.extend(query)
|
||||
target_list.extend([tag] * self.num_set)
|
||||
return {
|
||||
"support": torch.stack(support_set_list),
|
||||
"query": torch.stack(query_set_list),
|
||||
|
||||
@ -1,10 +1,10 @@
|
||||
import os
|
||||
import pickle
|
||||
import argparse
|
||||
from PIL import Image
|
||||
import lmdb
|
||||
from data.dataset import ImprovedImageFolder
|
||||
from tqdm import tqdm
|
||||
import fire
|
||||
|
||||
|
||||
def content_loader(path):
|
||||
@ -31,9 +31,4 @@ def transform(save_path, dataset_path):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description="transform dataset to lmdb database")
|
||||
parser.add_argument('--save', required=True)
|
||||
parser.add_argument('--dataset', required=True)
|
||||
args = parser.parse_args()
|
||||
transform(args.save, args.dataset)
|
||||
|
||||
fire.Fire(transform)
|
||||
|
||||
@ -1,19 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
def euclidean_dist(x, y):
|
||||
"""
|
||||
Compute euclidean distance between two tensors
|
||||
"""
|
||||
# x: B x N x D
|
||||
# y: B x M x D
|
||||
n = x.size(-2)
|
||||
m = y.size(-2)
|
||||
d = x.size(-1)
|
||||
if d != y.size(-1):
|
||||
raise Exception
|
||||
|
||||
x = x.unsqueeze(2).expand(x.size(0), n, m, d) # B x N x M x D
|
||||
y = y.unsqueeze(1).expand(x.size(0), n, m, d)
|
||||
|
||||
return torch.pow(x - y, 2).sum(-1)
|
||||
45
test.py
45
test.py
@ -48,23 +48,8 @@ def evaluate(query, target, support):
|
||||
|
||||
|
||||
def test(lmdb_path, import_path):
|
||||
dt = torchvision.transforms.Compose([
|
||||
torchvision.transforms.CenterCrop(224),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=None)
|
||||
N = 5
|
||||
K = 5
|
||||
episodic_dataset = dataset.EpisodicDataset(
|
||||
origin_dataset, # 抽取数据集
|
||||
N, # N
|
||||
K, # K
|
||||
100 # 任务数目
|
||||
)
|
||||
print(episodic_dataset)
|
||||
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=8, pin_memory=False)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
submit = import_module(f"submit.{import_path}")
|
||||
@ -72,26 +57,30 @@ def test(lmdb_path, import_path):
|
||||
extractor = submit.make_model()
|
||||
extractor.to(device)
|
||||
|
||||
accs = []
|
||||
batch_size = 10
|
||||
N = 5
|
||||
K = 5
|
||||
episodic_dataset = dataset.EpisodicDataset(origin_dataset, N, K, 100)
|
||||
data_loader = DataLoader(episodic_dataset, batch_size=batch_size, pin_memory=False)
|
||||
|
||||
with torch.no_grad():
|
||||
accs = []
|
||||
for item in tqdm(data_loader):
|
||||
item = convert_tensor(item, device, non_blocking=True)
|
||||
# item["query"]: B x ANK x 3 x W x H
|
||||
# item["support"]: B x ANK x 3 x W x H
|
||||
# item["query"]: B x NKA x 3 x W x H
|
||||
# item["support"]: B x NKA x 3 x W x H
|
||||
# item["target"]: B x NK
|
||||
batch_size = item["target"].size(0)
|
||||
A = item["query"].size(1) // item["target"].size(1)
|
||||
image_size = item["query"].shape[-3:]
|
||||
A = int(item["query"].size(1) / (N * K))
|
||||
|
||||
query_batch = extractor(item["query"].view([-1, *image_size])).view(batch_size, N * K, A, -1)
|
||||
support_batch = extractor(item["support"].view([-1, *image_size])).view(batch_size, N, K, A, -1)
|
||||
|
||||
query_batch = torch.mean(query_batch, -2)
|
||||
support_batch = torch.mean(support_batch, -2)
|
||||
|
||||
query_batch = torch.mean(query_batch, dim=-2)
|
||||
support_batch = torch.mean(support_batch, dim=-2)
|
||||
assert query_batch.shape[:2] == item["target"].shape[:2]
|
||||
accs.append(evaluate(query_batch, item["target"], support_batch))
|
||||
print(torch.tensor(accs).mean().item())
|
||||
r = torch.tensor(accs).mean().item()
|
||||
print(lmdb_path, r)
|
||||
return r
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -101,11 +90,11 @@ if __name__ == '__main__':
|
||||
"/data/few-shot/lmdb256/flowers.lmdb",
|
||||
"/data/few-shot/lmdb256/256-object.lmdb",
|
||||
"/data/few-shot/lmdb256/dtd.lmdb",
|
||||
"/data/few-shot/lmdb256/mini-imagenet-test.lmdb"
|
||||
"/data/few-shot/lmdb256/cars_train.lmdb",
|
||||
"/data/few-shot/lmdb256/cub.lmdb",
|
||||
]
|
||||
parser = argparse.ArgumentParser(description="test")
|
||||
parser.add_argument('-i', "--import_path", required=True)
|
||||
args = parser.parse_args()
|
||||
for path in defined_path:
|
||||
print(path)
|
||||
test(path, args.import_path)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user