Compare commits

..

1 Commits

Author SHA1 Message Date
57ad9a2572 test v2 2020-07-29 00:03:16 +08:00
5 changed files with 42 additions and 82 deletions

View File

@ -1,20 +1,17 @@
from scipy.io import loadmat
import torch
import torchvision
import lmdb
import os
import pickle
from PIL import Image
from io import BytesIO
from torch.utils.data import Dataset
from torchvision.datasets.folder import default_loader
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torchvision.transforms import functional
from pathlib import Path
from collections import defaultdict
class _CARS(Dataset):
class CARS(Dataset):
def __init__(self, root, loader=default_loader, transform=None):
self.root = Path(root)
self.transform = transform
@ -34,7 +31,7 @@ class _CARS(Dataset):
sample = self.loader(self.root / "cars_train" / file_name)
if self.transform is not None:
sample = self.transform(sample)
return sample, target
return sample
class ImprovedImageFolder(ImageFolder):
@ -77,23 +74,19 @@ class EpisodicDataset(Dataset):
self.num_set = num_set # K
self.num_episodes = num_episodes
self.t0 = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.t0 = torchvision.transforms.Compose([
# torchvision.transforms.Resize((224, 224)),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def apply_transform(self, img):
# img1 = self.transform(img)
# img2 = self.transform(img)
# return [self.t0(img), self.t0(functional.hflip(img))]
return [self.t0(img)]
def _fetch_list_data(self, id_list):
result = []
for i in id_list:
img = self.origin[i][0]
result.extend([self.t0(img)])
return result
def __len__(self):
return self.num_episodes
@ -103,18 +96,20 @@ class EpisodicDataset(Dataset):
support_set_list = []
query_set_list = []
target_list = []
for i, c in enumerate(random_classes):
for tag, c in enumerate(random_classes):
image_list = self.origin.classes_list[c]
if len(image_list) > self.num_set * 2:
if len(image_list) >= self.num_set * 2:
# have enough images belong to this class
idx_list = torch.randperm(len(image_list))[:self.num_set * 2].tolist()
else:
idx_list = torch.randint(high=len(image_list), size=(self.num_set * 2,)).tolist()
support = [self.origin[image_list[idx]][0] for idx in idx_list[:self.num_set]]
query = [self.origin[image_list[idx]][0] for idx in idx_list[:self.num_set]]
support_set_list.extend(sum(map(self.apply_transform, support), list()))
query_set_list.extend(sum(map(self.apply_transform, query), list()))
target_list.extend([i] * self.num_set)
support = self._fetch_list_data(map(image_list.__getitem__, idx_list[:self.num_set]))
query = self._fetch_list_data(map(image_list.__getitem__, idx_list[self.num_set:]))
support_set_list.extend(support)
query_set_list.extend(query)
target_list.extend([tag] * self.num_set)
return {
"support": torch.stack(support_set_list),
"query": torch.stack(query_set_list),

View File

@ -1,10 +1,10 @@
import os
import pickle
import argparse
from PIL import Image
import lmdb
from data.dataset import ImprovedImageFolder
from tqdm import tqdm
import fire
def content_loader(path):
@ -31,9 +31,4 @@ def transform(save_path, dataset_path):
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="transform dataset to lmdb database")
parser.add_argument('--save', required=True)
parser.add_argument('--dataset', required=True)
args = parser.parse_args()
transform(args.save, args.dataset)
fire.Fire(transform)

View File

View File

@ -1,19 +0,0 @@
import torch
def euclidean_dist(x, y):
"""
Compute euclidean distance between two tensors
"""
# x: B x N x D
# y: B x M x D
n = x.size(-2)
m = y.size(-2)
d = x.size(-1)
if d != y.size(-1):
raise Exception
x = x.unsqueeze(2).expand(x.size(0), n, m, d) # B x N x M x D
y = y.unsqueeze(1).expand(x.size(0), n, m, d)
return torch.pow(x - y, 2).sum(-1)

45
test.py
View File

@ -48,23 +48,8 @@ def evaluate(query, target, support):
def test(lmdb_path, import_path):
dt = torchvision.transforms.Compose([
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
origin_dataset = dataset.LMDBDataset(lmdb_path, transform=None)
N = 5
K = 5
episodic_dataset = dataset.EpisodicDataset(
origin_dataset, # 抽取数据集
N, # N
K, # K
100 # 任务数目
)
print(episodic_dataset)
data_loader = DataLoader(episodic_dataset, batch_size=8, pin_memory=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
submit = import_module(f"submit.{import_path}")
@ -72,26 +57,30 @@ def test(lmdb_path, import_path):
extractor = submit.make_model()
extractor.to(device)
accs = []
batch_size = 10
N = 5
K = 5
episodic_dataset = dataset.EpisodicDataset(origin_dataset, N, K, 100)
data_loader = DataLoader(episodic_dataset, batch_size=batch_size, pin_memory=False)
with torch.no_grad():
accs = []
for item in tqdm(data_loader):
item = convert_tensor(item, device, non_blocking=True)
# item["query"]: B x ANK x 3 x W x H
# item["support"]: B x ANK x 3 x W x H
# item["query"]: B x NKA x 3 x W x H
# item["support"]: B x NKA x 3 x W x H
# item["target"]: B x NK
batch_size = item["target"].size(0)
A = item["query"].size(1) // item["target"].size(1)
image_size = item["query"].shape[-3:]
A = int(item["query"].size(1) / (N * K))
query_batch = extractor(item["query"].view([-1, *image_size])).view(batch_size, N * K, A, -1)
support_batch = extractor(item["support"].view([-1, *image_size])).view(batch_size, N, K, A, -1)
query_batch = torch.mean(query_batch, -2)
support_batch = torch.mean(support_batch, -2)
query_batch = torch.mean(query_batch, dim=-2)
support_batch = torch.mean(support_batch, dim=-2)
assert query_batch.shape[:2] == item["target"].shape[:2]
accs.append(evaluate(query_batch, item["target"], support_batch))
print(torch.tensor(accs).mean().item())
r = torch.tensor(accs).mean().item()
print(lmdb_path, r)
return r
if __name__ == '__main__':
@ -101,11 +90,11 @@ if __name__ == '__main__':
"/data/few-shot/lmdb256/flowers.lmdb",
"/data/few-shot/lmdb256/256-object.lmdb",
"/data/few-shot/lmdb256/dtd.lmdb",
"/data/few-shot/lmdb256/mini-imagenet-test.lmdb"
"/data/few-shot/lmdb256/cars_train.lmdb",
"/data/few-shot/lmdb256/cub.lmdb",
]
parser = argparse.ArgumentParser(description="test")
parser.add_argument('-i', "--import_path", required=True)
args = parser.parse_args()
for path in defined_path:
print(path)
test(path, args.import_path)