use base module rewrite TSIT

This commit is contained in:
Ray Wong 2020-09-26 17:48:10 +08:00
parent 16f18ab2e2
commit f67bcdf161

View File

@ -3,44 +3,7 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from model import MODEL from model import MODEL
from model.normalization import select_norm_layer from model.base.module import Conv2dBlock, ResidualBlock, ReverseResidualBlock
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, padding_mode='zeros', norm_type="IN", use_bias=None,
use_spectral=True):
super().__init__()
self.padding_mode = padding_mode
self.use_bias = use_bias
self.use_spectral = use_spectral
if use_bias is None:
# Only for IN, use bias since it does not have affine parameters.
self.use_bias = norm_type == "IN"
norm_layer = select_norm_layer(norm_type)
self.main = nn.Sequential(
self.conv_block(in_channels, in_channels),
norm_layer(in_channels),
nn.LeakyReLU(0.2, inplace=True),
self.conv_block(in_channels, out_channels),
norm_layer(out_channels),
nn.LeakyReLU(0.2, inplace=True),
)
self.skip = nn.Sequential(
self.conv_block(in_channels, out_channels, padding=0, kernel_size=1),
norm_layer(out_channels),
nn.LeakyReLU(0.2, inplace=True),
)
def conv_block(self, in_channels, out_channels, kernel_size=3, padding=1):
conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding,
padding_mode=self.padding_mode, bias=self.use_bias)
if self.use_spectral:
return nn.utils.spectral_norm(conv)
else:
return conv
def forward(self, x):
return self.main(x) + self.skip(x)
class Interpolation(nn.Module): class Interpolation(nn.Module):
@ -58,104 +21,41 @@ class Interpolation(nn.Module):
return f"DownSampling(scale_factor={self.scale_factor}, mode={self.mode}, align_corners={self.align_corners})" return f"DownSampling(scale_factor={self.scale_factor}, mode={self.mode}, align_corners={self.align_corners})"
class FADE(nn.Module):
def __init__(self, use_spectral, features_channels, in_channels, affine=False, track_running_stats=True):
super().__init__()
# self.norm = nn.BatchNorm2d(num_features=in_channels, affine=affine, track_running_stats=track_running_stats)
self.norm = nn.InstanceNorm2d(num_features=in_channels)
self.alpha_conv = conv_block(use_spectral, features_channels, in_channels, kernel_size=3, padding=1,
padding_mode="zeros")
self.beta_conv = conv_block(use_spectral, features_channels, in_channels, kernel_size=3, padding=1,
padding_mode="zeros")
def forward(self, x, feature):
alpha = self.alpha_conv(feature)
beta = self.beta_conv(feature)
x = self.norm(x)
return alpha * x + beta
class FADEResBlock(nn.Module):
def __init__(self, use_spectral, features_channels, in_channels, out_channels):
super().__init__()
self.main = nn.Sequential(
FADE(use_spectral, features_channels, in_channels),
nn.LeakyReLU(0.2, inplace=True),
conv_block(use_spectral, in_channels, in_channels, kernel_size=3, padding=1),
FADE(use_spectral, features_channels, in_channels),
nn.LeakyReLU(0.2, inplace=True),
conv_block(use_spectral, in_channels, out_channels, kernel_size=3, padding=1),
)
self.skip = nn.Sequential(
FADE(use_spectral, features_channels, in_channels),
nn.LeakyReLU(0.2, inplace=True),
conv_block(use_spectral, in_channels, out_channels, kernel_size=1, padding=0),
)
self.up_sample = Interpolation(2, mode="nearest")
@staticmethod
def forward_with_fade(module, x, feature):
for layer in module:
if layer.__class__.__name__ == "FADE":
x = layer(x, feature)
else:
x = layer(x)
return x
def forward(self, x, feature):
out = self.forward_with_fade(self.main, x, feature) + self.forward_with_fade(self.main, x, feature)
return self.up_sample(out)
def conv_block(use_spectral, in_channels, out_channels, **kwargs):
conv = nn.Conv2d(in_channels, out_channels, **kwargs)
return nn.utils.spectral_norm(conv) if use_spectral else conv
@MODEL.register_module("TSIT-Generator") @MODEL.register_module("TSIT-Generator")
class TSITGenerator(nn.Module): class Generator(nn.Module):
def __init__(self, num_blocks=7, base_channels=64, content_in_channels=3, style_in_channels=3, def __init__(self, content_in_channels=3, out_channels=3, base_channels=64, num_blocks=7,
out_channels=3, use_spectral=True, input_layer_type="conv1x1"): padding_mode="reflect", activation_type="ReLU"):
super().__init__() super().__init__()
self.num_blocks = num_blocks self.num_blocks = num_blocks
self.base_channels = base_channels self.base_channels = base_channels
self.use_spectral = use_spectral
self.content_input_layer = self.build_input_layer(content_in_channels, base_channels, input_layer_type) self.content_stream = self.build_stream(padding_mode, activation_type)
self.content_stream = self.build_stream() self.start_conv = Conv2dBlock(content_in_channels, base_channels, activation_type=activation_type,
self.generator = self.build_generator() norm_type="IN", kernel_size=7, padding_mode=padding_mode, padding=3)
self.end_conv = nn.Sequential(
conv_block(use_spectral, base_channels, out_channels, kernel_size=7, padding=3, padding_mode="zeros"),
nn.Tanh()
)
def build_generator(self): sequence = []
stream_sequence = []
multiple_now = min(2 ** self.num_blocks, 2 ** 4) multiple_now = min(2 ** self.num_blocks, 2 ** 4)
for i in range(1, self.num_blocks + 1): for i in range(1, self.num_blocks + 1):
m = self.num_blocks - i m = self.num_blocks - i
multiple_prev = multiple_now multiple_prev = multiple_now
multiple_now = min(2 ** m, 2 ** 4) multiple_now = min(2 ** m, 2 ** 4)
stream_sequence.append( sequence.append(nn.Sequential(
FADEResBlock(self.use_spectral, multiple_prev * self.base_channels, multiple_prev * self.base_channels, ReverseResidualBlock(
multiple_now * self.base_channels)) multiple_prev * base_channels, multiple_now * base_channels,
return nn.ModuleList(stream_sequence) padding_mode=padding_mode, norm_type="FADE",
additional_norm_kwargs=dict(
condition_in_channels=multiple_prev * base_channels,
base_norm_type="BN",
padding_mode=padding_mode
)
),
Interpolation(2, mode="nearest")
))
self.generator = nn.Sequential(*sequence)
self.end_conv = Conv2dBlock(base_channels, out_channels, activation_type="Tanh",
kernel_size=7, padding_mode=padding_mode, padding=3)
def build_input_layer(self, in_channels, out_channels, input_layer_type="conv7x7"): def build_stream(self, padding_mode, activation_type):
if input_layer_type == "conv7x7":
return nn.Sequential(
conv_block(self.use_spectral, in_channels, out_channels, kernel_size=7, stride=1,
padding_mode="zeros", padding=3, bias=True),
select_norm_layer("IN")(out_channels),
nn.ReLU(inplace=True)
)
elif input_layer_type == "conv1x1":
return conv_block(self.use_spectral, in_channels, out_channels, kernel_size=1, stride=1, padding=0)
else:
raise NotImplemented
def build_stream(self):
multiple_now = 1 multiple_now = 1
stream_sequence = [] stream_sequence = []
for i in range(1, self.num_blocks + 1): for i in range(1, self.num_blocks + 1):
@ -163,21 +63,26 @@ class TSITGenerator(nn.Module):
multiple_now = min(2 ** i, 2 ** 4) multiple_now = min(2 ** i, 2 ** 4)
stream_sequence.append(nn.Sequential( stream_sequence.append(nn.Sequential(
Interpolation(scale_factor=0.5, mode="nearest"), Interpolation(scale_factor=0.5, mode="nearest"),
ResBlock(multiple_prev * self.base_channels, multiple_now * self.base_channels, ResidualBlock(
use_spectral=self.use_spectral) multiple_prev * self.base_channels, multiple_now * self.base_channels,
padding_mode=padding_mode, activation_type=activation_type, norm_type="IN")
)) ))
return nn.ModuleList(stream_sequence) return nn.ModuleList(stream_sequence)
def forward(self, content_img): def forward(self, content, z=None):
c = self.content_input_layer(content_img) c = self.start_conv(content)
content_features = [] content_features = []
for i in range(self.num_blocks): for i in range(self.num_blocks):
c = self.content_stream[i](c) c = self.content_stream[i](c)
content_features.append(c) content_features.append(c)
z = torch.randn(size=content_features[-1].size(), device=content_features[-1].device) if z is None:
z = torch.randn(size=content_features[-1].size(), device=content_features[-1].device)
for i in range(self.num_blocks): for i in range(self.num_blocks):
m = - i - 1 m = - i - 1
layer = self.generator[i] res_block = self.generator[i][0]
z = layer(z, content_features[m]) res_block.conv1.normalization.set_feature(content_features[m])
return self.end_conv(z) res_block.conv2.normalization.set_feature(content_features[m])
if res_block.learn_skip_connection:
res_block.res_conv.normalization.set_feature(content_features[m])
return self.end_conv(self.generator(z))