Compare commits
2 Commits
09db0a413f
...
9e8e73c988
| Author | SHA1 | Date | |
|---|---|---|---|
| 9e8e73c988 | |||
| 42d6253a1d |
129
configs/synthesizers/UGATIT-VoxCeleb2Anime.yml
Normal file
129
configs/synthesizers/UGATIT-VoxCeleb2Anime.yml
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
name: VoxCeleb2Anime
|
||||||
|
engine: UGATIT
|
||||||
|
result_dir: ./result
|
||||||
|
max_pairs: 1000000
|
||||||
|
|
||||||
|
distributed:
|
||||||
|
model:
|
||||||
|
# broadcast_buffers: False
|
||||||
|
|
||||||
|
misc:
|
||||||
|
random_seed: 324
|
||||||
|
|
||||||
|
checkpoint:
|
||||||
|
epoch_interval: 1 # one checkpoint every 1 epoch
|
||||||
|
n_saved: 2
|
||||||
|
|
||||||
|
interval:
|
||||||
|
print_per_iteration: 10 # print once per 10 iteration
|
||||||
|
tensorboard:
|
||||||
|
scalar: 10
|
||||||
|
image: 500
|
||||||
|
|
||||||
|
model:
|
||||||
|
generator:
|
||||||
|
_type: UGATIT-Generator
|
||||||
|
in_channels: 3
|
||||||
|
out_channels: 3
|
||||||
|
base_channels: 64
|
||||||
|
num_blocks: 4
|
||||||
|
img_size: 128
|
||||||
|
light: True
|
||||||
|
local_discriminator:
|
||||||
|
_type: UGATIT-Discriminator
|
||||||
|
in_channels: 3
|
||||||
|
base_channels: 64
|
||||||
|
num_blocks: 5
|
||||||
|
global_discriminator:
|
||||||
|
_type: UGATIT-Discriminator
|
||||||
|
in_channels: 3
|
||||||
|
base_channels: 64
|
||||||
|
num_blocks: 7
|
||||||
|
|
||||||
|
loss:
|
||||||
|
gan:
|
||||||
|
loss_type: lsgan
|
||||||
|
weight: 1.0
|
||||||
|
real_label_val: 1.0
|
||||||
|
fake_label_val: 0.0
|
||||||
|
cycle:
|
||||||
|
level: 1
|
||||||
|
weight: 10.0
|
||||||
|
id:
|
||||||
|
level: 1
|
||||||
|
weight: 10.0
|
||||||
|
cam:
|
||||||
|
weight: 1000
|
||||||
|
|
||||||
|
optimizers:
|
||||||
|
generator:
|
||||||
|
_type: Adam
|
||||||
|
lr: 0.0001
|
||||||
|
betas: [ 0.5, 0.999 ]
|
||||||
|
weight_decay: 0.0001
|
||||||
|
discriminator:
|
||||||
|
_type: Adam
|
||||||
|
lr: 1e-4
|
||||||
|
betas: [ 0.5, 0.999 ]
|
||||||
|
weight_decay: 0.0001
|
||||||
|
|
||||||
|
data:
|
||||||
|
train:
|
||||||
|
scheduler:
|
||||||
|
start_proportion: 0.5
|
||||||
|
target_lr: 0
|
||||||
|
buffer_size: 50
|
||||||
|
dataloader:
|
||||||
|
batch_size: 20
|
||||||
|
shuffle: True
|
||||||
|
num_workers: 2
|
||||||
|
pin_memory: True
|
||||||
|
drop_last: True
|
||||||
|
dataset:
|
||||||
|
_type: GenerationUnpairedDataset
|
||||||
|
root_a: "/data/i2i/VoxCeleb2Anime/trainA"
|
||||||
|
root_b: "/data/i2i/VoxCeleb2Anime/trainB"
|
||||||
|
random_pair: True
|
||||||
|
pipeline:
|
||||||
|
- Load
|
||||||
|
- Resize:
|
||||||
|
size: [ 135, 135 ]
|
||||||
|
- RandomCrop:
|
||||||
|
size: [ 128, 128 ]
|
||||||
|
- RandomHorizontalFlip
|
||||||
|
- ToTensor
|
||||||
|
- Normalize:
|
||||||
|
mean: [ 0.5, 0.5, 0.5 ]
|
||||||
|
std: [ 0.5, 0.5, 0.5 ]
|
||||||
|
test:
|
||||||
|
dataloader:
|
||||||
|
batch_size: 8
|
||||||
|
shuffle: False
|
||||||
|
num_workers: 1
|
||||||
|
pin_memory: False
|
||||||
|
drop_last: False
|
||||||
|
dataset:
|
||||||
|
_type: GenerationUnpairedDataset
|
||||||
|
root_a: "/data/i2i/VoxCeleb2Anime/testA"
|
||||||
|
root_b: "/data/i2i/VoxCeleb2Anime/testB"
|
||||||
|
random_pair: False
|
||||||
|
pipeline:
|
||||||
|
- Load
|
||||||
|
- Resize:
|
||||||
|
size: [ 128, 128 ]
|
||||||
|
- ToTensor
|
||||||
|
- Normalize:
|
||||||
|
mean: [ 0.5, 0.5, 0.5 ]
|
||||||
|
std: [ 0.5, 0.5, 0.5 ]
|
||||||
|
video_dataset:
|
||||||
|
_type: SingleFolderDataset
|
||||||
|
root: "/data/i2i/VoxCeleb2Anime/test_video_frames/"
|
||||||
|
with_path: True
|
||||||
|
pipeline:
|
||||||
|
- Load
|
||||||
|
- Resize:
|
||||||
|
size: [ 128, 128 ]
|
||||||
|
- ToTensor
|
||||||
|
- Normalize:
|
||||||
|
mean: [ 0.5, 0.5, 0.5 ]
|
||||||
|
std: [ 0.5, 0.5, 0.5 ]
|
||||||
@ -115,3 +115,15 @@ data:
|
|||||||
- Normalize:
|
- Normalize:
|
||||||
mean: [0.5, 0.5, 0.5]
|
mean: [0.5, 0.5, 0.5]
|
||||||
std: [0.5, 0.5, 0.5]
|
std: [0.5, 0.5, 0.5]
|
||||||
|
video_dataset:
|
||||||
|
_type: SingleFolderDataset
|
||||||
|
root: "/data/i2i/VoxCeleb2Anime/test_video_frames/"
|
||||||
|
with_path: True
|
||||||
|
pipeline:
|
||||||
|
- Load
|
||||||
|
- Resize:
|
||||||
|
size: [ 256, 256 ]
|
||||||
|
- ToTensor
|
||||||
|
- Normalize:
|
||||||
|
mean: [ 0.5, 0.5, 0.5 ]
|
||||||
|
std: [ 0.5, 0.5, 0.5 ]
|
||||||
|
|||||||
@ -219,12 +219,12 @@ def get_trainer(config, logger):
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
g = torch.Generator()
|
g = torch.Generator()
|
||||||
g.manual_seed(config.misc.random_seed)
|
g.manual_seed(config.misc.random_seed)
|
||||||
indices = torch.randperm(len(engine.state.test_dataset), generator=g).tolist()[:10]
|
random_start = torch.randperm(len(engine.state.test_dataset)-11, generator=g).tolist()[0]
|
||||||
test_images = dict(
|
test_images = dict(
|
||||||
a=[[], [], [], []],
|
a=[[], [], [], []],
|
||||||
b=[[], [], [], []]
|
b=[[], [], [], []]
|
||||||
)
|
)
|
||||||
for i in indices:
|
for i in range(random_start, random_start+10):
|
||||||
batch = convert_tensor(engine.state.test_dataset[i], idist.device())
|
batch = convert_tensor(engine.state.test_dataset[i], idist.device())
|
||||||
|
|
||||||
real_a, real_b = batch["a"].view(1, *batch["a"].size()), batch["b"].view(1, *batch["a"].size())
|
real_a, real_b = batch["a"].view(1, *batch["a"].size()), batch["b"].view(1, *batch["a"].size())
|
||||||
@ -278,7 +278,6 @@ def get_tester(config, logger):
|
|||||||
paths = engine.state.output["path"]
|
paths = engine.state.output["path"]
|
||||||
batch_size = img_tensors[0].size(0)
|
batch_size = img_tensors[0].size(0)
|
||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
# image_name = f"{engine.state.iteration * batch_size - batch_size + i + 1}.png"
|
|
||||||
image_name = Path(paths[i]).name
|
image_name = Path(paths[i]).name
|
||||||
torchvision.utils.save_image([img[i] for img in img_tensors], engine.state.img_output_dir / image_name,
|
torchvision.utils.save_image([img[i] for img in img_tensors], engine.state.img_output_dir / image_name,
|
||||||
nrow=len(img_tensors))
|
nrow=len(img_tensors))
|
||||||
@ -308,7 +307,7 @@ def run(task, config, logger):
|
|||||||
print(traceback.format_exc())
|
print(traceback.format_exc())
|
||||||
elif task == "test":
|
elif task == "test":
|
||||||
assert config.resume_from is not None
|
assert config.resume_from is not None
|
||||||
test_dataset = data.DATASET.build_with(config.data.test.dataset)
|
test_dataset = data.DATASET.build_with(config.data.test.video_dataset)
|
||||||
logger.info(f"test with dataset:\n{test_dataset}")
|
logger.info(f"test with dataset:\n{test_dataset}")
|
||||||
test_data_loader = idist.auto_dataloader(test_dataset, **config.data.test.dataloader)
|
test_data_loader = idist.auto_dataloader(test_dataset, **config.data.test.dataloader)
|
||||||
tester = get_tester(config, logger)
|
tester = get_tester(config, logger)
|
||||||
|
|||||||
@ -1,18 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import functools
|
|
||||||
from model.registry import MODEL
|
from model.registry import MODEL
|
||||||
|
from model.normalization import select_norm_layer
|
||||||
|
|
||||||
def _select_norm_layer(norm_type):
|
|
||||||
if norm_type == "BN":
|
|
||||||
return functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
|
|
||||||
elif norm_type == "IN":
|
|
||||||
return functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
|
|
||||||
elif norm_type == "NONE":
|
|
||||||
return lambda x: nn.Identity()
|
|
||||||
else:
|
|
||||||
raise NotImplemented(f'normalization layer {norm_type} is not found')
|
|
||||||
|
|
||||||
|
|
||||||
class GANImageBuffer(object):
|
class GANImageBuffer(object):
|
||||||
@ -77,7 +66,7 @@ class ResidualBlock(nn.Module):
|
|||||||
if use_bias is None:
|
if use_bias is None:
|
||||||
# Only for IN, use bias since it does not have affine parameters.
|
# Only for IN, use bias since it does not have affine parameters.
|
||||||
use_bias = norm_type == "IN"
|
use_bias = norm_type == "IN"
|
||||||
norm_layer = _select_norm_layer(norm_type)
|
norm_layer = select_norm_layer(norm_type)
|
||||||
models = [nn.Sequential(
|
models = [nn.Sequential(
|
||||||
nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1, padding_mode=padding_mode, bias=use_bias),
|
nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1, padding_mode=padding_mode, bias=use_bias),
|
||||||
norm_layer(num_channels),
|
norm_layer(num_channels),
|
||||||
@ -101,7 +90,7 @@ class ResGenerator(nn.Module):
|
|||||||
norm_type="IN", use_dropout=False):
|
norm_type="IN", use_dropout=False):
|
||||||
super(ResGenerator, self).__init__()
|
super(ResGenerator, self).__init__()
|
||||||
assert num_blocks >= 0, f'Number of residual blocks must be non-negative, but got {num_blocks}.'
|
assert num_blocks >= 0, f'Number of residual blocks must be non-negative, but got {num_blocks}.'
|
||||||
norm_layer = _select_norm_layer(norm_type)
|
norm_layer = select_norm_layer(norm_type)
|
||||||
use_bias = norm_type == "IN"
|
use_bias = norm_type == "IN"
|
||||||
|
|
||||||
self.start_conv = nn.Sequential(
|
self.start_conv = nn.Sequential(
|
||||||
@ -157,7 +146,7 @@ class PatchDiscriminator(nn.Module):
|
|||||||
def __init__(self, in_channels, base_channels=64, num_conv=3, norm_type="IN"):
|
def __init__(self, in_channels, base_channels=64, num_conv=3, norm_type="IN"):
|
||||||
super(PatchDiscriminator, self).__init__()
|
super(PatchDiscriminator, self).__init__()
|
||||||
assert num_conv >= 0, f'Number of conv blocks must be non-negative, but got {num_conv}.'
|
assert num_conv >= 0, f'Number of conv blocks must be non-negative, but got {num_conv}.'
|
||||||
norm_layer = _select_norm_layer(norm_type)
|
norm_layer = select_norm_layer(norm_type)
|
||||||
use_bias = norm_type == "IN"
|
use_bias = norm_type == "IN"
|
||||||
|
|
||||||
kernel_size = 4
|
kernel_size = 4
|
||||||
|
|||||||
@ -0,0 +1,13 @@
|
|||||||
|
import torch.nn as nn
|
||||||
|
import functools
|
||||||
|
|
||||||
|
|
||||||
|
def select_norm_layer(norm_type):
|
||||||
|
if norm_type == "BN":
|
||||||
|
return functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
|
||||||
|
elif norm_type == "IN":
|
||||||
|
return functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
|
||||||
|
elif norm_type == "NONE":
|
||||||
|
return lambda x: nn.Identity()
|
||||||
|
else:
|
||||||
|
raise NotImplemented(f'normalization layer {norm_type} is not found')
|
||||||
20
tool/generate_video.sh
Normal file
20
tool/generate_video.sh
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -o noclobber
|
||||||
|
set -o errexit # Used to exit upon error, avoiding cascading errors
|
||||||
|
set -o pipefail # Unveils hidden failures
|
||||||
|
set -o nounset # Exposes unset variables
|
||||||
|
|
||||||
|
pt=${1}
|
||||||
|
pt=${pt//[[:black:]]/}
|
||||||
|
|
||||||
|
output_dir=/tmp/frames
|
||||||
|
# .rm -rf $output_dir && /run.sh configs/synthesizers/UGATIT.yml test 0 resume_from=${pt} img_output_dir=${output_dir}
|
||||||
|
ids=$(ls ${output_dir} | cut -d "@" -f 1 | uniq)
|
||||||
|
|
||||||
|
mkdir tmp
|
||||||
|
for id in $ids; do
|
||||||
|
echo $id
|
||||||
|
ffmpeg -y -i "${output_dir}/${id}@%d.png" -vcodec mpeg4 tmp/${id}.mp4
|
||||||
|
# ffmpeg -y -f image2 -i "${output_dir}/${id}@%d.png" tmp/${id}.gif;
|
||||||
|
done
|
||||||
47
tool/process/vox2_get_I_frame.sh
Normal file
47
tool/process/vox2_get_I_frame.sh
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
META_FILE="/data/VoxCeleb2/vox2_meta.csv"
|
||||||
|
VOX2_TEST_PATH="/data/VoxCeleb2/test/mp4/"
|
||||||
|
VOX2_DEV_PATH="/data/VoxCeleb2/dev/mp4/"
|
||||||
|
|
||||||
|
generate_frame() {
|
||||||
|
clip_path=$1
|
||||||
|
save_path=$3
|
||||||
|
fn="${clip_path##$2}"
|
||||||
|
fn=${fn//\//-}
|
||||||
|
ffmpeg -hide_banner -loglevel panic -threads 8 -i "$clip_path" -vf select="'eq(pict_type\,I)'" -vsync 2 -f image2 "$save_path${fn%.mp4}_%d.jpg" &>>ff.log
|
||||||
|
|
||||||
|
gnum=$(ls $save_path${fn%.mp4}_* | wc -l)
|
||||||
|
if [ $gnum -eq 0 ]; then
|
||||||
|
echo $clip_path >>"not_done.txt"
|
||||||
|
echo $clip_path ERROR
|
||||||
|
else
|
||||||
|
echo $clip_path >>"done.txt"
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
|
||||||
|
iter_videos() {
|
||||||
|
idl=$1
|
||||||
|
root=$2
|
||||||
|
save_path=$3
|
||||||
|
|
||||||
|
cat "$idl" | wc -l
|
||||||
|
while read -u 10 pid; do
|
||||||
|
echo $pid
|
||||||
|
for vp in $root$pid/*/; do
|
||||||
|
num=$(ls $vp | wc -l)
|
||||||
|
if [ $num -ge 4 ]; then
|
||||||
|
echo $vp
|
||||||
|
for cp in $vp*.mp4; do
|
||||||
|
generate_frame "$cp" "$root" "$save_path"
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
done 10<"$idl"
|
||||||
|
}
|
||||||
|
|
||||||
|
cat $META_FILE | grep f | grep dev | grep -Po "id[0-9]+" >f_dev.txt
|
||||||
|
cat $META_FILE | grep f | grep test | grep -Po "id[0-9]+" >f_test.txt
|
||||||
|
|
||||||
|
iter_videos f_dev.txt $VOX2_DEV_PATH "temp/dev/"
|
||||||
|
iter_videos f_test.txt $VOX2_TEST_PATH "temp/test/"
|
||||||
Loading…
Reference in New Issue
Block a user